Bulk and grain-boundary ionic conductivity in sodium zirconophosphosilicate Na3Zr2(SiO4)2PO4 (NASICON)

[1]  Marie Guin,et al.  Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2(PO4)3 Single Crystals Observed by Microcontact Impedance Spectroscopy , 2018, Chemistry of materials : a publication of the American Chemical Society.

[2]  Reinhard Uecker,et al.  Solid Electrolytes: Extremely Fast Charge Carriers in Garnet‐Type Li6La3ZrTaO12 Single Crystals , 2017 .

[3]  Q. Ma,et al.  Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction , 2017 .

[4]  P. Bottke,et al.  Ion dynamics in solid electrolytes for lithium batteries , 2017, Journal of Electroceramics.

[5]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[6]  J. Sakamoto,et al.  Resolving the Grain Boundary and Lattice Impedance of Hot-Pressed Li7La3Zr2O12 Garnet Electrolytes , 2014 .

[7]  V. Viallet,et al.  An all-solid state NASICON sodium battery operating at 200 °C , 2014 .

[8]  M. Wilkening,et al.  Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+ Hopping in Argyrodite-Type Li6PS5Br , 2013 .

[9]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[10]  V. Thangadurai,et al.  Macroscopic and microscopic Li+ transport parameters in cubic garnet-type “Li6.5La2.5Ba0.5ZrTaO12” as probed by impedance spectroscopy and NMR , 2012 .

[11]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[12]  P. Bruce,et al.  Solid State Electrochemistry , 1997 .

[13]  D. Sinclair,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[14]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[15]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .