Individual Differences in the Alignment of Structural and Functional Markers of the V5/MT Complex in Primates

Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture.

[1]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[2]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[3]  Michael Petrides,et al.  The morphology and variability of the caudal rami of the superior temporal sulcus , 2012, The European journal of neuroscience.

[4]  Holly Bridge,et al.  Topographical representation of binocular depth in the human visual cortex using fMRI. , 2007, Journal of vision.

[5]  F. Dick,et al.  In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas , 2012, The Journal of Neuroscience.

[6]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[7]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[8]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[9]  M. Landy,et al.  The effect of viewpoint on perceived visual roughness. , 2007, Journal of vision.

[10]  Bruce Fischl,et al.  Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: A possible marker for primary cortex and hemispheric differences , 2006, NeuroImage.

[11]  J. S. Guntupalli,et al.  Decoding neural representational spaces using multivariate pattern analysis. , 2014, Annual review of neuroscience.

[12]  David J. Heeger,et al.  Pattern-motion responses in human visual cortex , 2002, Nature Neuroscience.

[13]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[14]  Bruce Fischl,et al.  Within-subject template estimation for unbiased longitudinal image analysis , 2012, NeuroImage.

[15]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[16]  Robert Turner,et al.  Introduction to the NeuroImage Special Issue: “In vivo Brodmann mapping of the human brain” , 2014, NeuroImage.

[17]  J. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[18]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[19]  A. Parker,et al.  Perceptually Bistable Three-Dimensional Figures Evoke High Choice Probabilities in Cortical Area MT , 2001, The Journal of Neuroscience.

[20]  T. Yoshiura,et al.  Heschl and superior temporal gyri: low signal intensity of the cortex on T2-weighted MR images of the normal brain. , 2000, Radiology.

[21]  K. Amunts,et al.  Individual variability is not noise , 2013, Trends in Cognitive Sciences.

[22]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[23]  W. Baaré,et al.  An ex vivo imaging pipeline for producing high‐quality and high‐resolution diffusion‐weighted imaging datasets , 2011, Human brain mapping.

[24]  Andrew J. Parker,et al.  A Causal Role for V5/MT Neurons Coding Motion-Disparity Conjunctions in Resolving Perceptual Ambiguity , 2013, Current Biology.

[25]  R. Goebel,et al.  7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images , 2001, Magnetic resonance in medicine.

[26]  Wyeth Bair,et al.  Long-range clustered connections within extrastriate visual area V5/MT of the rhesus macaque. , 2012, Cerebral cortex.

[27]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[28]  R. Goebel,et al.  High-Resolution Mapping of Myeloarchitecture In Vivo: Localization of Auditory Areas in the Human Brain. , 2015, Cerebral cortex.

[29]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[30]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[31]  Mark Jenkinson,et al.  Correspondences between retinotopic areas and myelin maps in human visual cortex , 2014, NeuroImage.

[32]  Holly Bridge,et al.  Delineating extrastriate visual area MT(V5) using cortical myeloarchitecture , 2014, NeuroImage.

[33]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[34]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[35]  Kristine Krug,et al.  Playing the electric light orchestra—how electrical stimulation of visual cortex elucidates the neural basis of perception , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. , 1988, Journal of neurophysiology.

[37]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[38]  H. Bridge,et al.  Methodological issues relating to in vivo cortical myelography using MRI , 2005, Human brain mapping.

[39]  K. H. Britten,et al.  A relationship between behavioral choice and the visual responses of neurons in macaque MT , 1996, Visual Neuroscience.

[40]  Bernhard Preim,et al.  A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI , 2015, NeuroImage.

[41]  J. Grafman,et al.  Imaging cortical anatomy by high‐resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17 , 2002, Magnetic resonance in medicine.

[42]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[43]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[44]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[45]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[46]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[47]  A W Toga,et al.  Localization of the human cortical visual area MT based on computer aided histological analysis. , 2005, Cerebral Cortex.

[48]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[49]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[50]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[51]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. , 1988, Journal of neurophysiology.

[52]  Liang Wang,et al.  Probabilistic Maps of Visual Topography in Human Cortex. , 2015, Cerebral cortex.

[53]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[54]  W. Vanduffel,et al.  Visual Field Map Clusters in Macaque Extrastriate Visual Cortex , 2009, The Journal of Neuroscience.

[55]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[56]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[57]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[58]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  A. Schleicher,et al.  High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex , 2005, Human brain mapping.

[60]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[61]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[62]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[63]  P. Matthews,et al.  Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. , 2005, Journal of vision.

[64]  K. Amunts,et al.  Architectonic Mapping of the Human Brain beyond Brodmann , 2015, Neuron.

[65]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[66]  E Courchesne,et al.  In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. , 1992, Cerebral cortex.

[67]  F. Dick,et al.  Cerebral Cortex doi:10.1093/cercor/bhs213 Cerebral Cortex Advance Access published July 23, 2012 Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy † , 2022 .

[68]  G. DeAngelis,et al.  Cortical area MT and the perception of stereoscopic depth , 1998, Nature.

[69]  S. Francis,et al.  Correspondence of human visual areas identified using functional and anatomical MRI in vivo at 7 T , 2012, Journal of magnetic resonance imaging : JMRI.

[70]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[71]  Tyrone D. Cannon,et al.  Genetic influences on brain structure , 2001, Nature Neuroscience.

[72]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[73]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[74]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[75]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[76]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[77]  Lawrence C. Sincich,et al.  Independent Projection Streams from Macaque Striate Cortex to the Second Visual Area and Middle Temporal Area , 2003, The Journal of Neuroscience.

[78]  A. Parker,et al.  Comparing perceptual signals of single V5/MT neurons in two binocular depth tasks. , 2004, Journal of neurophysiology.

[79]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[80]  Evan M. Gordon,et al.  Functional System and Areal Organization of a Highly Sampled Individual Human Brain , 2015, Neuron.