iSphere: Focus+Context Sphere Visualization for Interactive Large Graph Exploration

Interactive exploration plays a critical role in large graph visualization. Existing techniques, such as zoom-and-pan on a 2D plane and hyperbolic browser facilitate large graph exploration by showing both the details of a focal area and its surrounding context that guides the exploration process. However, existing techniques for large graph exploration are limited in either providing too little context or presenting graphs with too much distortion. In this paper, we propose a novel focus+context technique, iSphere, to address the limitation. iSphere maps a large graph onto a Riemann Sphere that better preserves graph structures and shows greater context information. We conduct extensive experiment studies on different graph exploration tasks under various conditions. The results show that iSphere performs the best in task completion time compared to the baseline techniques in link and path exploration tasks. This research also contributes to understanding large graph exploration on small screens.

[1]  Benjamin B. Bederson,et al.  A review of overview+detail, zooming, and focus+context interfaces , 2009, CSUR.

[2]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[3]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[4]  H. Coxeter,et al.  Introduction to Geometry. , 1961 .

[5]  W. Fenchel Elementary Geometry in Hyperbolic Space , 1989 .

[6]  Heidrun Schumann,et al.  CGV - An interactive graph visualization system , 2009, Comput. Graph..

[7]  Fei Wang,et al.  Demonstrating Interactive Multi-resolution Large Graph Exploration , 2013, 2013 IEEE 13th International Conference on Data Mining Workshops.

[8]  Jean-Daniel Fekete,et al.  Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[9]  Ken Perlin,et al.  Pad: an alternative approach to the computer interface , 1993, SIGGRAPH.

[10]  Peter J. Passmore,et al.  A User Study on Curved Edges in Graph Visualization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[11]  George W. Furnas,et al.  A fisheye follow-up: further reflections on focus + context , 2006, CHI.

[12]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[13]  Jörg A. Walter H-MDS: a new approach for interactive visualization with multidimensional scaling in the hyperbolic space , 2004, Inf. Syst..

[14]  A. F. Beardon,et al.  The Poincaré Metric of Plane Domains , 1978 .

[15]  Mark D. Apperley,et al.  A review and taxonomy of distortion-oriented presentation techniques , 1994, TCHI.

[16]  Aniket Kittur,et al.  Apolo: interactive large graph sensemaking by combining machine learning and visualization , 2011, KDD.

[17]  James Abello,et al.  ASK-GraphView: A Large Scale Graph Visualization System , 2006, IEEE Transactions on Visualization and Computer Graphics.

[18]  Michael Balzer,et al.  Level-of-detail visualization of clustered graph layouts , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[19]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Peter Eades,et al.  Multilevel Visualization of Clustered Graphs , 1996, GD.

[21]  D. Gans An introduction to non-Euclidean geometry , 1973 .

[22]  Heidrun Schumann,et al.  Interactive Lenses for Visualization: An Extended Survey , 2017, Comput. Graph. Forum.

[23]  Stephen G. Kobourov,et al.  Visualizing Large Graphs with Compound-Fisheye Views and Treemaps , 2004, GD.

[24]  Yehuda Koren,et al.  Topological fisheye views for visualizing large graphs , 2004, IEEE Transactions on Visualization and Computer Graphics.

[25]  Mark Apperley,et al.  A Bifocal Display Technique for Data Presentation , 1982, Eurographics.

[26]  Stefan Jeschke,et al.  Route Visualization Using Detail Lenses , 2010, IEEE Transactions on Visualization and Computer Graphics.

[27]  Lisa Singh,et al.  Exploring community structure in biological networks with random graphs , 2013, BMC Bioinformatics.

[28]  Masahiro Takatsuka,et al.  Adding Filtering to Geometric Distortion to Visualize a Clustered Graph on Small Screens , 2004, InVis.au.

[29]  Catherine Plaisant,et al.  Navigation patterns and usability of zoomable user interfaces with and without an overview , 2002, TCHI.

[30]  Douglas N. Arnold,et al.  Möbius transformations revealed , 2008 .

[31]  Jimeng Sun,et al.  HiMap: Adaptive visualization of large-scale online social networks , 2009, 2009 IEEE Pacific Visualization Symposium.

[32]  Patrick Baudisch,et al.  Focus plus context screens: combining display technology with visualization techniques , 2001, UIST '01.

[33]  Jimeng Sun,et al.  FacetAtlas: Multifaceted Visualization for Rich Text Corpora , 2010, IEEE Transactions on Visualization and Computer Graphics.

[34]  Takao Ito,et al.  Sphere Anchored Map: A Visualization Technique for Bipartite Graphs in 3D , 2009, HCI.

[35]  Manojit Sarkar,et al.  Graphical fisheye views , 1994, CACM.

[36]  Leo Sario,et al.  Chapter II. Riemann Surfaces , 1960 .

[37]  Jarke J. van Wijk,et al.  Interactive Visualization of Small World Graphs , 2004, IEEE Symposium on Information Visualization.

[38]  Jean-Daniel Fekete,et al.  Author Manuscript, Published in "sigchi Conference on Human Factors in Computing Systems Topology-aware Navigation in Large Networks , 2022 .

[39]  Bernd Hamann,et al.  A magnification lens for interactive volume visualization , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[40]  Philippe Castagliola,et al.  A Comparison of the Readability of Graphs Using Node-Link and Matrix-Based Representations , 2004, IEEE Symposium on Information Visualization.

[41]  Kwan-Liu Ma,et al.  Spherical layout and rendering methods for immersive graph visualization , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[42]  Heidrun Schumann,et al.  A scalable framework for information visualization , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[43]  James D. Hollan,et al.  Pad++: A Zoomable Graphical Sketchpad For Exploring Alternate Interface Physics , 1996, J. Vis. Lang. Comput..

[44]  Yehuda Koren,et al.  Graph Drawing by Stress Majorization , 2004, GD.

[45]  Kwan-Liu Ma,et al.  Large-Scale Graph Visualization and Analytics , 2013, Computer.

[46]  Naftali Kadmon,et al.  A Polyfocal Projection for Statistical Surfaces , 1978 .

[47]  James W. Anderson,et al.  Hyperbolic geometry , 1999 .

[48]  Xiaotong Liu,et al.  ViSizer: A Visualization Resizing Framework , 2013, IEEE Transactions on Visualization and Computer Graphics.

[49]  Hanghang Tong,et al.  g-Miner: Interactive Visual Group Mining on Multivariate Graphs , 2015, CHI.

[50]  Mark Crovella,et al.  Multidimensional Scaling in the Poincaré Disk , 2011, ArXiv.

[51]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[52]  Tamara Munzner,et al.  Exploring Large Graphs in 3D Hyperbolic Space , 1998, IEEE Computer Graphics and Applications.

[53]  James R. Eagan,et al.  SchemeLens: A Content-Aware Vector-Based Fisheye Technique for Navigating Large Systems Diagrams , 2016, IEEE Transactions on Visualization and Computer Graphics.

[54]  Stephen G. Kobourov,et al.  Non-Euclidean Spring Embedders , 2005, IEEE Trans. Vis. Comput. Graph..