Systems biology in neuroscience: bridging genes to cognition

Systems biology is a new branch of biology aimed at understanding biological complexity. Genomic and proteomic methods integrated with cellular and organismal analyses allow modelling of physiological processes. Progress in understanding synapse composition and new experimental and bioinformatics methods indicate the synapse is an excellent starting point for global systems biology of the brain. A neuroscience systems biology programme, organized as a consortium, is proposed.

[1]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[2]  S. Grant,et al.  Proteomic analysis of NMDA receptor–adhesion protein signaling complexes , 2000, Nature Neuroscience.

[3]  Hongqing Guo,et al.  Single-Cell Microarray Analysis in Hippocampus CA1: Demonstration and Validation of Cellular Heterogeneity , 2003, The Journal of Neuroscience.

[4]  M. Kennedy,et al.  Identification of Proteins in the Postsynaptic Density Fraction by Mass Spectrometry , 2000, The Journal of Neuroscience.

[5]  J. J. Fox,et al.  From topology to dynamics in biochemical networks. , 2001, Chaos.

[6]  Hanno Steen,et al.  Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. , 2002, Trends in biotechnology.

[7]  Christine E. Horak,et al.  Global analysis of gene expression in yeast , 2002, Functional & Integrative Genomics.

[8]  M. Taoka,et al.  Identification of protein substrates of Ca(2+)/calmodulin-dependent protein kinase II in the postsynaptic density by protein sequencing and mass spectrometry. , 2002, Biochemical and biophysical research communications.

[9]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[10]  J. Shabanowitz,et al.  Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae , 2002, Nature Biotechnology.

[11]  J. Sanes,et al.  Can molecules explain long-term potentiation? , 1999, Nature Neuroscience.

[12]  Yoshiya Oda,et al.  Identification of activity‐regulated proteins in the postsynaptic density fraction , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[13]  Nada Amin,et al.  Global architecture of genetic interactions on the protein network , 2003, Nature Biotechnology.

[14]  Albert-László Barabási,et al.  Linked: The New Science of Networks , 2002 .

[15]  S. Fields,et al.  Protein analysis on a proteomic scale , 2003, Nature.

[16]  P. Uetz,et al.  Towards an understanding of complex protein networks. , 2001, Trends in cell biology.

[17]  Steve D. M. Brown,et al.  A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse , 2000, Nature Genetics.

[18]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[19]  Rolf Kötter,et al.  Neuroscience databases : a practical guide , 2003 .

[20]  P. Legrain,et al.  Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens , 1997, Nature Genetics.

[21]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[22]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[23]  P. Marin,et al.  Synaptic multiprotein complexes associated with 5‐HT2C receptors: a proteomic approach , 2002, The EMBO journal.

[24]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[25]  Miran Kim,et al.  Proteomic and functional evidence for a P2X7 receptor signalling complex , 2001, The EMBO journal.

[26]  Robert Plomin,et al.  Behavioral genetics in the postgenomic era , 2003 .

[27]  I. K. Wood Neuroscience: Exploring the brain , 1996 .

[28]  A van Bergen,et al.  Long-term stimulation of mouse hippocampal slice culture on microelectrode array. , 2003, Brain research. Brain research protocols.

[29]  A. C. Jiménez,et al.  The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. , 1997, Nature.

[30]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[31]  B. Dujon,et al.  The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. , 1997, Nature.

[32]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[33]  Yingming Zhao,et al.  The Presynaptic Particle Web Ultrastructure, Composition, Dissolution, and Reconstitution , 2001, Neuron.

[34]  S. Grant,et al.  Proteomics in postgenomic neuroscience: the end of the beginning , 2004, Nature Neuroscience.

[35]  E. Fisher,et al.  SHIRPA, a protocol for behavioral assessment: validation for longitudinal study of neurological dysfunction in mice , 2001, Neuroscience Letters.

[36]  H. Kitano,et al.  Computational systems biology , 2002, Nature.

[37]  Bernard Dujon,et al.  The nucleotide sequence of Saccharomyces , 1997 .

[38]  David Botstein,et al.  The nucleotide sequence of yeast chromosome XVI , 1997 .

[39]  Patrick Rodriguez,et al.  Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.