Effect of heat treatment on the microstructure and mechanical properties of the spray-deposited Al–10.8Zn–2.8Mg–1.9Cu alloy

Abstract In this study, effect of various aging tempers (T6, T73 and RRA treatment) on the microstructure and mechanical properties of the spray-deposited Al–10.8Zn–2.8Mg–1.9Cu alloy was studied using high-resolution electron microscopy, selected area diffraction, and tensile tests. The results indicate that the two types of GP zones, GPI and GPII, are major precipitates for the alloy under T6 condition. No clear precipitation free zone was observed, and the grain boundary precipitates were continuous. Under two-step aging condition, the GP zones and η′ are major precipitates for the alloy, the discontinuous grain boundary precipitates are favorable to SCC resistance in over-aged condition, which reduces its strength 58 MPa (about 7%) compared to the peak-aged condition. After retrogression and re-aging treatment, the grain boundary precipitates are discontinuous, which is closed to that resulting from T73 temper. RRA treatment decreased ultimate tensile strength 25 MPa (about 3%) in values compared with the alloy at T6 condition.