Finite element beam propagation method for three-dimensional optical waveguide structures

A beam propagation method (BPM) based on the finite element method (FEM) is described for longitudinally varying three-dimensional (3-D) optical waveguides. In order to avoid nonphysical reflections from the computational window edges, the transparent boundary condition is introduced. The present algorithm using the Pade approximation is, to our knowledge, the first wide-angle finite element beam propagation method for 3-D waveguide structures. To show the validity and usefulness of this approach, numerical results are shown for Gaussian-beam excitation of a straight rib waveguide and guided-mode propagation in a Y-branching rib waveguide.

[1]  P. E. Lagasse,et al.  Finite Element Analysis Waveguides of Optical , 1981 .

[2]  B. Rahman Finite Element Analysis of Optical Waveguides , 1995, Progress In Electromagnetics Research.

[3]  M. Koshiba,et al.  Approximate Scalar Finite-Element Analysis of Anisotropic Optical Waveguides with Off-Diagonal Elements in a Permittivity Tensor , 1984 .

[4]  Frank Schmidt,et al.  An adaptive approach to the numerical solution of Fresnel's wave equation , 1993 .

[5]  M. Feit,et al.  Light propagation in graded-index optical fibers. , 1978, Applied optics.

[6]  Masanori Koshiba,et al.  A finite element beam propagation method for strongly guiding and longitudinally varying optical waveguides , 1996 .

[7]  A. Maruta,et al.  Transparent boundary for the finite-element beam-propagation method. , 1993, Optics letters.

[8]  Dirk Schulz,et al.  Novel generalized finite-difference beam propagation method , 1994 .

[9]  J. B. Davies,et al.  Finite element/finite difference propagation algorithm for integrated optical device , 1989 .

[10]  M. Koshiba,et al.  A wide-angle finite-element beam propagation method , 1996, IEEE Photonics Technology Letters.

[11]  Akihiro Maruta,et al.  Transparent boundary for the finite-element beam-propagation method. , 1993 .

[12]  Tetsuya Mizumoto,et al.  Modified Numerical Technique for Beam Propagation Method Based on the Galerkin's Technique , 1994 .

[13]  Edgar Voges,et al.  Three-dimensional semi-vectorial wide-angle beam propagation method , 1994 .

[14]  J. B. Davies,et al.  Computation of wave propagation in integrated optical devices using a z-transient variational principle , 1990 .

[15]  H.-P. Nolting,et al.  Results of benchmark tests for different numerical BPM algorithms , 1995 .

[16]  Hugo E. Hernandez-Figueroa,et al.  Simple nonparaxial beam-propagation method for integrated optics , 1994 .

[17]  Masanori Koshiba,et al.  Split-step finite-element method applied to nonlinear integrated optics , 1990 .

[18]  G. R. Hadley,et al.  Transparent boundary condition for the beam propagation method , 1992 .

[19]  G. R. Hadley,et al.  Wide-angle beam propagation using Pade approximant operators. , 1992, Optics letters.

[20]  B. Hermansson,et al.  The unitarity of split-operator finite difference and finite-element methods: Applications to longitudinally varying semiconductor rib waveguides , 1990 .

[21]  G. R. Hadley,et al.  Transparent boundary condition for beam propagation. , 1991, Optics letters.

[22]  David Yevick,et al.  New formulations of the matrix beam propagation method: application to rib waveguides , 1989 .