Applications of biomaterials in alveolar and maxillofacial bone reconstruction

Abstract: In this chapter, biomaterials used as bone-substitutes in alveolar/maxillofacial reconstruction are presented and their properties described.

[1]  E.A. Monroe,et al.  New Calcium Phosphate Ceramic Material for Bone and Tooth Implants , 1971, Journal of dental research.

[2]  Woo Seob Kim,et al.  Cartilage Engineered in Predetermined Shapes Employing Cell Transplantation on Synthetic Biodegradable Polymers , 1994, Plastic and reconstructive surgery.

[3]  R.Z. Legfros,et al.  Magnesium and Carbonate in Enamel and Synthetic Apatites , 1996, Advances in dental research.

[4]  N Passuti,et al.  Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic. , 1999, Journal of biomedical materials research.

[5]  Z. Gugala,et al.  In vitro growth and activity of primary chondrocytes on a resorbable polylactide three-dimensional scaffold. , 2000, Journal of biomedical materials research.

[6]  D Amiel,et al.  Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. , 1995, Journal of biomedical materials research.

[7]  S. Gogolewski,et al.  Degradable, microporous vascular prosthesis from segmented polyurethane , 1986 .

[8]  W W Minuth,et al.  Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. , 1996, Biomaterials.

[9]  D W Hutmacher,et al.  An introduction to biodegradable materials for tissue engineering applications. , 2001, Annals of the Academy of Medicine, Singapore.

[10]  R Z LeGeros,et al.  Calcium phosphates in oral biology and medicine. , 1991, Monographs in oral science.

[11]  G Galletti,et al.  Long-term patency of regenerated neoaortic wall following the implant of a fully biodegradable polyurethane prosthesis: experimental lipid diet model in pigs. , 1989, Annals of vascular surgery.

[12]  E C Moreno,et al.  Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries. , 1977, Caries research.

[13]  S. Gogolewski,et al.  Polyurethane microporous membranes as pericardial substitutes , 1987 .

[14]  S. Gogolewski,et al.  An artificial skin based on biodegradable mixtures of polylactides and polyurethanes for full-thickness skin wound covering , 1983 .

[15]  J P LeGeros,et al.  Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites. , 1995, Connective tissue research.

[16]  P. Neuenschwander,et al.  New versatile, elastomeric, degradable polymeric materials for medicine. , 1999, International journal of biological macromolecules.

[17]  M. Harmand,et al.  Fibrin seal in wound healing: effect of thrombin and [Ca2+] on human skin fibroblast growth and collagen production. , 1990, Journal of dermatological science.

[18]  C. Bleiwas,et al.  Zinc effect on the in vitro formation of calcium phosphates: relevance to clinical inhibition of calculus formation. , 1999, American journal of dentistry.

[19]  A J Bailey,et al.  Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. , 1998, Bone.

[20]  Maurilio Marcacci,et al.  Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. , 2003, Novartis Foundation symposium.

[21]  H. Höhling,et al.  Aspects of collagen mineralization in hard tissue formation. , 2005, International review of cytology.

[22]  C. Friedman,et al.  BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. , 1998, Journal of biomedical materials research.

[23]  K. Burg,et al.  Biomaterial developments for bone tissue engineering. , 2000, Biomaterials.

[24]  S. Thomas,et al.  Alginate dressings in surgery and wound management--Part 1. , 2000, Journal of wound care.

[25]  M. Jasionowski,et al.  Injectable gels for tissue engineering , 2001, The Anatomical record.

[26]  A B Imhoff,et al.  [Surgical therapeutic possibilities of cartilage damage]. , 2001, Der Unfallchirurg.

[27]  R Z LeGeros,et al.  Chemical stability of carbonate- and fluoride-containing apatites. , 1983, Caries research.

[28]  Tetsuya Tateishi,et al.  Mesenchymal stem cells and bioceramics: strategies to regenerate the skeleton. , 2003, Novartis Foundation symposium.

[29]  Raquel Zapanta LeGeros,et al.  Apatites in biological systems , 1981 .

[30]  R. Holmes,et al.  Bone Regeneration Within a Coralline Hydroxyapatite Implant , 1979, Plastic and reconstructive surgery.

[31]  Paul Nieuwenhuis,et al.  Growth of a neo‐artery induced by a biodegradable polymeric vascular prosthesis , 1983 .

[32]  K A Athanasiou,et al.  Basic science of articular cartilage repair. , 2001, Clinics in sports medicine.

[33]  D Abensur,et al.  Sinus grafting with porous bone mineral (Bio-Oss) for implant placement: a 5-year study on 15 patients. , 2000, The International journal of periodontics & restorative dentistry.

[34]  R. Legeros,et al.  Properties of osteoconductive biomaterials: calcium phosphates. , 2002, Clinical orthopaedics and related research.

[35]  E. Yilmaz,et al.  Chitosan: a versatile biomaterial. , 2004, Advances in experimental medicine and biology.

[36]  Robert Gurny,et al.  Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[37]  Jeffrey A Hubbell,et al.  Materials as morphogenetic guides in tissue engineering. , 2003, Current opinion in biotechnology.

[38]  A I Caplan,et al.  Stem cell technology and bioceramics: from cell to gene engineering. , 1999, Journal of biomedical materials research.

[39]  A. Reddi,et al.  Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. , 2000, Tissue engineering.

[40]  S. Gogolewski,et al.  Polyurethane vascular prostheses in pigs , 1987 .

[41]  Junzo Tanaka,et al.  Transplantation of cultured bone cells using combinations of scaffolds and culture techniques. , 2003, Biomaterials.

[42]  RACQUEL ZAPANTA-LEGEROS,et al.  Effect of Carbonate on the Lattice Parameters of Apatite , 1965, Nature.

[43]  Racquel Z. LeGeros,et al.  Materials for Bone Repair, Augmentation, and Implant Coatings , 1992 .

[44]  U. Joos,et al.  Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. , 2004, Biomaterials.

[45]  Mauro Alini,et al.  Chondrocytes seeded onto poly (L/DL-lactide) 80%/20% porous scaffolds: a biochemical evaluation. , 2003, Journal of biomedical materials research. Part A.

[46]  Antonios G Mikos,et al.  Biomimetic materials for tissue engineering. , 2003, Biomaterials.

[47]  H. Höhling,et al.  Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle. , 1995, Connective tissue research.

[48]  Katsutoshi Motegi,et al.  Implantation of Octacalcium Phosphate (OCP) in Rat Skull Defects Enhances Bone Repair , 1999 .

[49]  U. Joos,et al.  Biological and biophysical principles in extracorporal bone tissue engineering. Part II. , 2004, International journal of oral and maxillofacial surgery.

[50]  M. Okazaki,et al.  Crystallographic and chemical properties of Mg-containing apatites before and after suspension in solutions. , 1992, Magnesium research.

[51]  K. Burg,et al.  Comparative study of seeding methods for three-dimensional polymeric scaffolds , 2000, Journal of biomedical materials research.

[52]  R. Z. LeGeros,et al.  1. Introduction — Scope , 1991 .

[53]  J. Vacanti,et al.  Synthetic Polymers Seeded with Chondrocytes Provide a Template for New Cartilage Formation , 1991, Plastic and reconstructive surgery.

[54]  R Langer,et al.  Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. , 1993, Journal of biomedical materials research.

[55]  A. Pennings,et al.  Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs. , 1991, Biomaterials.

[56]  D. Hutmacher,et al.  Scaffolds in tissue engineering bone and cartilage. , 2000, Biomaterials.

[57]  S. Gogolewski,et al.  BIODEGRADABLE MATERIALS OF POLYLACTIDES, .4. POROUS BIOMEDICAL MATERIALS BASED ON MIXTURES OF POLYLACTIDES AND POLYURETHANES , 1982 .

[58]  R Z LeGeros,et al.  Calcium Phosphate Materials in Restorative Dentistry: a Review , 1988, Advances in dental research.

[59]  Racquel Z. LeGeros,et al.  7. Substrate Surface Dissolution and Interfacial Biological Mineralization , 1991 .

[60]  G. Naughton,et al.  Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. , 1997, Journal of biomedical materials research.

[61]  R. Legeros,et al.  Apatite Crystallites: Effects of Carbonate on Morphology , 1967, Science.

[62]  J. H. de Groot,et al.  Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci , 1990 .

[63]  T. Tateishi,et al.  Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. , 2000, Journal of biomedical materials research.

[64]  Racquel Z. LeGeros,et al.  Conversion of Monetite, CaHPO4, To Apatites: Effect of Carbonate on the Crystallinity and the Morphology of the Apatite Crystallites , 1970 .

[65]  N. Peppas,et al.  Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications , 2003 .

[66]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.