Adaptive discretization of stationary and incompressible Navier–Stokes equations by stabilized finite element methods

We have derived a residual-based a posteriori error estimator for a stabilized finite element discretization of the stationary incompressible Navier–Stokes equations with general boundary conditions. An adaptive algorithm based on this error estimator is discussed and tested on some analytical and physical problems. When possible we study precisely the behaviour of the effectivity index.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[3]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[4]  Jacques Rappaz,et al.  Error estimates and adaptive finite elements for nonlinear diffusion-convection problems , 1996 .

[5]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[6]  Lutz Tobiska,et al.  Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations , 1996 .

[7]  A POSTERIORI ERROR ESTIMATORS VIA BUBBLE FUNCTIONS , 1996 .

[8]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[9]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[10]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[11]  T. Hughes,et al.  A tutorial in elementary finite element error analysis: A systematic presentation of a priori and a posteriori error estimates , 1998 .

[12]  R. Verfürth A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .

[13]  Rüdiger Verfürth,et al.  Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation , 1998 .

[14]  Claes Johnson,et al.  Adaptive finite element methods for diffusion and convection problems , 1990 .

[15]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[16]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[17]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[18]  Ivo Babuška,et al.  Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements , 1992 .

[19]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[20]  Claudio Canuto,et al.  Stabilized spectral methods for the Navier--Stokes equations: Residual-free bubbles and preconditioning , 1997 .

[21]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[22]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[23]  Thomas J. R. Hughes,et al.  What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .

[24]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.