We demonstrate ultrafast delay tuning of a slow-light pulse with a response time <10 ps. This is achieved using two types of slow light: dispersion-compensated slow light for the signal pulse, and low-dispersion slow light to enhance nonlinear effects of the control pulse. These two types of slow light are generated simultaneously in Si lattice-shifted photonic crystal waveguides, arising from flat and straight photonic bands, respectively. The control pulse blueshifts the signal pulse spectrum, through dynamic tuning caused by the plasma effect of two-photon-absorption-induced carriers. This changes the delay by up to 10 ps only when the two pulses overlap within the waveguide and enables ultrafast tuning that is not limited by the carrier lifetime. Using this, we succeeded in tuning the delay of one target pulse within a pulse train with 12 ps intervals.