Estimation of phylogenetic relationships within the Ascomycota on the basis of 18S rDNA sequences and chemotaxonomy

Small subunit rRNA gene sequences (18S rDNA), cell wall carbohydrate composition and ubiquinone components were analysed within a larger number of ascomycetous yeasts and dimorphic fungi to validate their congruence in predicting phylogenetic relationships. The glucose-mannose pattern distinguishes the Hemiascomycetes from the Euascomycetes and the Protomycetes which are characterised with the glucose-mannose-galactose-rhamnose-(fucose) profile. The glucose-mannose-galactose pattern was found in the cell walls of all the three classes. Different coenzyme Q component (CoQ5 to CoQ10) were found within the representatives of the Hemiascomycetes. Whereas CoQ9, CoQ10 and CoQ10H2 predominate within the Euascomycetes, CoQ9 and CoQ10 characterise the Protomycetes. Chemotaxonomic studies coupled with additional molecular and co-evolution studies support the idea that the Hemiascomycetes occupy a basal position in the phylogeny of Ascomycota. These results are not in line with the phylogenetic studies based on the sequences of 18S rRNA encoding gene. The maximum parsimony analysis indicated that Hemiascomycetes and Protomycetes might represent sister groups, opposing to the earlier reported results, where the Archiascomycetes (Protomycetes) or the Hemiascomycetes had been considered to be the most primitive ascomycetous fungi. Instead of the class Archiascomycetes, the term Protomycetes was introduced reflecting much better the properties of the whole class.

[1]  K. Lopandić,et al.  Analysis of phylogenetic relationships among Ascomycota with yeast phases using ribosomal DNA sequences and cell wall sugars , 2002 .

[2]  Robert Bauer,et al.  Phylogeny and systematics of the fungi with special reference to the Ascomycota and Basidiomycota. , 2002, Chemical immunology.

[3]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[4]  Hans-Werner Mewes,et al.  MIPS: a database for protein sequences, homology data and yeast genome information , 1997, Nucleic Acids Res..

[5]  J. Edman,et al.  The alpha-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene , 1993, Molecular and cellular biology.

[6]  D. Savile CHAPTER 26 – Possible Interrelationships between Fungal Groups , 1968 .

[7]  C. Dörfler,et al.  Ein Beitrag zur Systematik und Entwicklungsbiologie höherer Pilze: Hefe-Typen der Basidiomyceten. Teil II: Microbotryum-Typ , 1991 .

[8]  B. Byers,et al.  Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[9]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[10]  G. S. Hoog,et al.  On the subdivision of the genusCeratocystis , 2007, Antonie van Leeuwenhoek.

[11]  G. Hauptmann,et al.  Class III POU genes of zebrafish are predominantly expressed in the central nervous system. , 1996, Nucleic acids research.

[12]  I. Schmitt,et al.  Higher level phylogenetic relationships of euascomycetes (Pezizomycotina) inferred from a combined analysis of nuclear and mitochondrial sequence data , 2002, Mycological Progress.

[13]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[14]  P. Briza,et al.  Phytopathogenic Filamentous (Ashbya, Eremothecium) and Dimorphic Fungi (Holleya, Nematospora) with Needle‐shaped Ascospores as New Members Within the Saccharomycetaceae , 1997, Yeast.

[15]  J. Spatafora Ascomal evolution of filamentous ascomycetes: evidence from molecular data , 1995 .

[16]  H. Mewes,et al.  Overview of the yeast genome. , 1997, Nature.

[17]  Hans Lehrach,et al.  High resolution cosmid and P1 maps spanning the 14 Mb genome of the fission yeast S. pombe , 1993, Cell.

[18]  D. Yarrow Methods for the isolation, maintenance and identification of yeasts , 1998 .

[19]  J Wöstemeyer,et al.  Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1alpha genes. , 2001, Gene.

[20]  S. Oliver,et al.  Erratum: Overview of the yeast genome , 1997, Nature.

[21]  M. Collins,et al.  Phylogenetic relationships among members of the ascomycetous yeast genera Brettanomyces, Debaryomyces, Dekkera, and Kluyveromyces deduced by small-subunit rRNA gene sequences. , 1996, International journal of systematic bacteriology.

[22]  M. Breitenbach,et al.  Fungal allergy and pathogenicity , 2002 .

[23]  K. Lopandić,et al.  Molecular Characterization and Genotypic Identification of Metschnikowia Species , 1996 .

[24]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[25]  K. Wimmer,et al.  Molecular characterization and application of random amplified polymorphic DNA analysis of Mrakia and Sterigmatomyces species. , 1994, International journal of systematic bacteriology.

[26]  C. P. Kurtzman Systematics of the ascomycetous yeasts assessed from ribosomal RNA sequence divergence , 1993, Antonie van Leeuwenhoek.

[27]  J. Spencer,et al.  METSCHNIKOWIA KAMIENSKII, SP. N., A YEAST ASSOCIATED WITH BRINE SHRIMP , 1964, Journal of bacteriology.

[28]  C. Kurtzman,et al.  Ascomycetous Yeasts and Yeastlike Taxa , 2001 .

[29]  M. Berbee,et al.  Dating the evolutionary radiations of the true fungi , 1993 .

[30]  H. Nishida,et al.  Archiascomycetes: detection of a major new lineage within the Ascomycota , 1994 .

[31]  R. Bauer,et al.  ANALYSIS OF CELL WALL CARBOHYDRATES (NEUTRAL SUGARS) FROM ASCOMYCETOUS AND BASIDIOMYCETOUS YEASTS WITH AND WITHOUT DERIVATIZATION , 1993 .

[32]  B. Ralph,et al.  The Cell Wall Composition and Taxonomy of Some Basidiomycetes and Ascomycetes , 1966 .

[33]  I. Barasoain,et al.  An acidic water-soluble cell wall polysaccharide : a chemotaxonomic marker for Fusarium and gibberella , 2000 .

[34]  Petra Dangel,et al.  Yeasts associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in asco- and basidiomycetes , 1996 .

[35]  D. Walossek The Upper CambrianRehbachiella, its larval development, morphology and significance for the phylogeny of Branchiopoda and Crustacea , 1995, Hydrobiologia.

[36]  M. Berbee,et al.  Fungal Molecular Evolution: Gene Trees and Geologic Time , 2001 .

[37]  M. Baum,et al.  Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences , 1990, Molecular and cellular biology.

[38]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.