Parameterized algorithms for Module Map problems

Abstract Motivated by applications in the analysis of genetic networks, we introduce and study the NP-hard Module Map problem which has as input a graph  G = ( V , E ) with red and blue edges and an integer  k and asks to transform  G by at most  k edge modifications into a graph  G ′ which has the following properties: the vertex set of  G ′ can be partitioned into so-called clusters such that inside a cluster every pair of vertices is connected by a blue edge and for two distinct clusters  A and  B either all vertices  u ∈ A and  v ∈ B are connected by a red edge or there is no edge between  A and  B . We show that Module Map can be solved in  O ( 3 k ⋅ ( | V | + | E | ) )  time and  O ( 2 k ⋅ | V | 3 ) time, respectively. Furthermore, we show that Module Map admits a kernel with  O ( k 2 ) vertices.

[1]  Christian Komusiewicz,et al.  Assessing the computational complexity of multilayer subgraph detection , 2016, Network Science.

[2]  Jiehua Chen,et al.  Cluster Editing for Multi-Layer and Temporal Graphs , 2017, Theory of Computing Systems.

[3]  Rolf Niedermeier,et al.  Graph-Modeled Data Clustering: Exact Algorithms for Clique Generation , 2005, Theory of Computing Systems.

[4]  Amir Abboud,et al.  Tight Hardness Results for LCS and Other Sequence Similarity Measures , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[5]  Sebastian Böcker,et al.  Going weighted: Parameterized algorithms for cluster editing , 2009, Theor. Comput. Sci..

[6]  Sebastian Böcker,et al.  Exact Algorithms for Cluster Editing: Evaluation and Experiments , 2008, Algorithmica.

[7]  Avrim Blum,et al.  Correlation Clustering , 2004, Machine Learning.

[8]  Mirko Krivánek,et al.  NP-hard problems in hierarchical-tree clustering , 1986, Acta Informatica.

[9]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[10]  Svatopluk Poljak,et al.  On the complexity of the subgraph problem , 1985 .

[11]  Ron Shamir,et al.  Constructing module maps for integrated analysis of heterogeneous biological networks , 2014, Nucleic acids research.

[12]  Michal Pilipczuk,et al.  Tight bounds for Parameterized Complexity of Cluster Editing , 2013, STACS.

[13]  Fahad Panolan,et al.  Simultaneous Feedback Edge Set: A Parameterized Perspective , 2016, ISAAC.

[14]  Noga Alon,et al.  Color-coding , 1995, JACM.

[15]  Christian Komusiewicz,et al.  Cluster editing with locally bounded modifications , 2012, Discret. Appl. Math..

[16]  R. Shamir,et al.  From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions , 2008, Molecular systems biology.

[17]  Roded Sharan,et al.  Cluster graph modification problems , 2002, Discret. Appl. Math..

[18]  Christian Komusiewicz,et al.  Parameterizing Edge Modification Problems Above Lower Bounds , 2015, Theory of Computing Systems.

[19]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[20]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[21]  Holger H. Hoos,et al.  Programming by Optimisation Meets Parameterised Algorithmics: A Case Study for Cluster Editing , 2015, LION.