Systematic use of deictic commands for mobile robot navigation

This thesis systematizes the previously ad hoc specification of targets and motion commands for visual deictic control of mobile robots, which enables control of mobile robots in the real world without requiring foreknowledge of the environment. Whereas ad hoc (or generic) visual targets may be scattered densely enough in the world to support deictically controlled navigation, and whereas environment-independent motion commands may suffice in open enough spaces, real environments in which robots would be useful cannot in general be relied upon to be sufficiently serendipitous. Instead, this thesis abstracts from the structure of the world a well-defined set of canonical targets and motion commands relative to those targets which together support general-purpose navigation. Canonical targets are a superset of those identified as critical by a visibility graph analysis. Targets and commands are also defined to position a robot at its goal location for the performance of whatever task it is navigating to accomplish. Finally, an algorithm is defined to identify canonical targets and the motion commands required to control navigation in arbitrary environments. The algorithm is demonstrated by a training system for prospective users.

[1]  Kimiya Yamaashi,et al.  Object-oriented video: interaction with real-world objects through live video , 1992, CHI.

[2]  Daniel P. Huttenlocher,et al.  Visually-guided navigation by comparing two-dimensional edge images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Kam S. Tso,et al.  Mars pathfinder mission Internet-based operations using WITS , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[4]  Richard A. Bolt,et al.  The human interface: Where people and computers meet , 1984 .

[5]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[6]  Robert Ivlev,et al.  The Rocky 7 rover: a Mars sciencecraft prototype , 1997, Proceedings of International Conference on Robotics and Automation.

[7]  J. Balaram,et al.  Supervisory telerobotics testbed for unstructured environments , 1992, J. Field Robotics.

[8]  Jack C. Morrison,et al.  On-Board Software for the Mars Pathfinder Microrover , 1995 .

[9]  Gregory D. Hager,et al.  Feature-based visual servoing and its application to telerobotics , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[10]  Anil K. Jain,et al.  Three-Dimensional Object Recognition Systems , 1993 .

[11]  Jean-Claude Latombe A Fast Path Planner for a Car-Like Indoor Mobile Robot , 1991, AAAI.

[12]  Koichi Hashimoto,et al.  Visual Servoing: Real-Time Control of Robot Manipulators Based on Visual Sensory Feedback , 1993 .

[13]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[14]  Noah Webster,et al.  Webster's new collegiate dictionary , 1936 .

[15]  Erann Gat,et al.  Mars microrover navigation: performance evaluation and enhancement , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[16]  David Kortenkamp Perception for mobile robot navigation: A survey of the state of the art , 1994 .

[17]  Yue Du,et al.  A color projection for fast generic target tracking , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[18]  Andrew K. C. Wong,et al.  Vision-directed path planning, navigation, and control for an autonomous mobile robot , 1993, Other Conferences.

[19]  Pascal Fua,et al.  Computational strategies for object recognition , 1992, CSUR.

[20]  Manolis I. A. Lourakis,et al.  Navigational support for robotic wheelchair platforms: an approach that combines vision and range sensors , 1997, Proceedings of International Conference on Robotics and Automation.

[21]  Geb Thomas,et al.  Virtual Tools for Supervisory and Collaborative Control of Robots , 1997, Presence: Teleoperators & Virtual Environments.

[22]  Erann Gat,et al.  Behavior control for robotic exploration of planetary surfaces , 1994, IEEE Trans. Robotics Autom..

[23]  Michael E. Cleary,et al.  Algorithmic navigation to train deictic mobile robot operators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[24]  Charles E. Thorpe,et al.  SCARF: a color vision system that tracks roads and intersections , 1993, IEEE Trans. Robotics Autom..

[25]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[26]  David Chapman,et al.  What are plans for? , 1990, Robotics Auton. Syst..

[27]  Won S. Kim,et al.  Demonstration of a high-fidelity predictive/preview display technique for telerobotic servicing in space , 1993, IEEE Trans. Robotics Autom..

[28]  David Jerome Braunegg MARVEL: a system that recognizes world locations with stereo vision , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Henrik I. Christensen,et al.  Model-driven vision for in-door navigation , 1993, Other Conferences.

[30]  Thomas B. Sheridan,et al.  Telerobotics, Automation, and Human Supervisory Control , 2003 .

[31]  Robert J. Schilling,et al.  Fundamentals of robotics - analysis and control , 1990 .

[32]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[33]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[34]  Yue Du,et al.  Generic target tracking using color , 1993, Other Conferences.

[35]  Hirochika Inoue,et al.  Vision Based Robot Behavior: Tools and Testbeds for Real-World AI Research , 1993, IJCAI.

[36]  D R Olson,et al.  Language and thought: aspects of a cognitive theory of semantics. , 1970, Psychological review.

[37]  J. Crisman Color vision for the detection of unstructured road and intersections , 1990 .

[38]  Jake K. Aggarwal,et al.  Significant line segments for an indoor mobile robot , 1993, IEEE Trans. Robotics Autom..

[39]  Thenkurussi Kesavadas,et al.  Virtual reality based point-and-direct robotic system with instrumented glove , 1994 .

[40]  C. Tanz Studies in the acquisition of deictic terms , 1983 .

[41]  Hans P. Moravec Robot spatial perception by stereoscopic vision and 3D evidence grids , 1996 .

[42]  Philip E. Agre,et al.  The dynamic structure of everyday life , 1988 .

[43]  B. Habibi,et al.  Pengi : An Implementation of A Theory of Activity , 1998 .

[44]  David Chapman,et al.  Vision, instruction, and action , 1990 .

[45]  Michael E. Cleary,et al.  Canonical targets for mobile robot control by deictic visual servoing , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[46]  J. D. Crisman,et al.  User instruction for semi-autonomous mobile robot control , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[47]  Thomas B. Sheridan,et al.  Supervisory control of remote manipulation , 1967, IEEE Spectrum.

[48]  David Kortenkamp,et al.  Recognizing and Interpreting Gestures on a Mobile Robot , 1996, AAAI/IAAI, Vol. 2.

[49]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[50]  Michael E. Cleary,et al.  The deictically controlled wheelchair , 1998, Image Vis. Comput..

[51]  W. M. Wells Visual Estimation of 3-D Line Segments from Motion - A Mobile Robot Vision System , 1987, AAAI.

[52]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[53]  Nils J. Nilsson,et al.  A Mobile Automaton: An Application of Artificial Intelligence Techniques , 1969, IJCAI.

[54]  François G. Pin,et al.  Navigation of car-like mobile robots in obstructed environments using convex polygonal cells , 1992, Robotics Auton. Syst..

[55]  Hirochika Inoue,et al.  Hyper Scooter: a mobile robot sharing visual information with a human , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[56]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[57]  William H. Beyer,et al.  CRC standard mathematical tables , 1976 .

[58]  P. Gove Webster's third new international dictionary of the English language, unabridged, with seven language dictionary , 1976 .

[59]  S. M. Udupa,et al.  Collision Detection and Avoidance in Computer Controlled Manipulators , 1977, IJCAI.

[60]  David Chapman,et al.  Penguins Can Make Cake , 1989, AI Mag..

[61]  Reid G. Simmons,et al.  An integrated walking system for the Ambler planetary rover , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[62]  L. Leifer,et al.  Clinical evaluation of a desktop robotic assistant. , 1989, Journal of rehabilitation research and development.

[63]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[64]  Henrik I. Christensen,et al.  Model-driven vision for in-door navigation , 1994, Robotics Auton. Syst..

[65]  Gregory D. Hager,et al.  Real-time vision-based robot localization , 1993, IEEE Trans. Robotics Autom..

[66]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[67]  K.S. Tso,et al.  The Web Interface for Telescience (WITS) , 1997, Proceedings of International Conference on Robotics and Automation.

[68]  Richard A. Bolt,et al.  “Put-that-there”: Voice and gesture at the graphics interface , 1980, SIGGRAPH '80.