Combinatorial metallurgical synthesis and processing of high-entropy alloys

<jats:p><jats:fig position="anchor"><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" orientation="portrait" mime-subtype="jpeg" mimetype="image" position="float" xlink:type="simple" xlink:href="S0884291418002145_figAb" /></jats:fig></jats:p>

[1]  H. Emmerich,et al.  Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications , 2011 .

[2]  D. Raabe,et al.  Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties , 2017, JOM.

[3]  D. Raabe,et al.  Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy , 2017, Scientific Reports.

[4]  H. Stein,et al.  New materials for the light-induced hydrogen evolution reaction from the Cu–Si–Ti–O system , 2016 .

[5]  J. Schroers,et al.  Combinatorial Strategies for Synthesis and Characterization of Alloy Microstructures over Large Compositional Ranges. , 2016, ACS combinatorial science.

[6]  Peter K. Liaw,et al.  Synthesis of Al x CoCrFeNi high-entropy alloys by high-gravity combustion from oxides , 2017 .

[7]  J. Hosson,et al.  Additive Manufacturing of High-Entropy Alloys by Laser Processing , 2016, JOM.

[8]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[9]  D. Raabe,et al.  In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy , 2018 .

[10]  Ji-Cheng Zhao Reliability of the diffusion-multiple approach for phase diagram mapping , 2004 .

[11]  J. Seol,et al.  Boron doped ultrastrong and ductile high-entropy alloys , 2018, Acta Materialia.

[12]  Yong Zhang,et al.  Prediction of high-entropy stabilized solid-solution in multi-component alloys , 2012 .

[13]  D. Ponge,et al.  Hydrogen embrittlement of an interstitial equimolar high-entropy alloy , 2018 .

[14]  I. Todd,et al.  The use of high-entropy alloys in additive manufacturing , 2015 .

[15]  N. P. Gurao,et al.  In the quest of single phase multi-component multiprincipal high entropy alloys , 2017 .

[16]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[17]  Cormac Toher,et al.  The search for high entropy alloys: A high-throughput ab-initio approach , 2017, Acta Materialia.

[18]  C. Tasan,et al.  Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design , 2015 .

[19]  Joost J. Vlassak,et al.  A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films , 1992 .

[20]  D. Dingley,et al.  Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy , 2004, Journal of microscopy.

[21]  D. Raabe,et al.  Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one , 2015 .

[22]  T. Niendorf,et al.  Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation , 2018 .

[23]  Ji-Cheng Zhao Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships , 2006 .

[24]  Jinshan Li,et al.  A brief review of high-entropy films , 2017 .

[25]  A. Ludwig,et al.  Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical high-throughput measurements: a case study for the system Ni-Al. , 2014, ACS combinatorial science.

[26]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[27]  D. Raabe,et al.  Combinatorial design of transitory constitution steels: Coupling high strength with inherent formability and weldability through sequenced austenite stability , 2016 .

[28]  S. Ulrich,et al.  Combinatorial exploration of the High Entropy Alloy System Co-Cr-Fe-Mn-Ni , 2017 .

[29]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[30]  C. Tasan,et al.  A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior , 2017 .

[31]  D. Choudhuri,et al.  A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties , 2016 .

[32]  Douglas C. Hofmann,et al.  Compositionally graded metals: A new frontier of additive manufacturing , 2014 .

[33]  Peter K. Liaw,et al.  Science and technology in high-entropy alloys , 2018, Science China Materials.

[34]  C. R. Brundle,et al.  XPS and angle resolved XPS, in the semiconductor industry: Characterization and metrology control of ultra-thin films , 2010 .

[35]  D. Cahill,et al.  High-throughput diffusion multiples , 2005 .

[36]  D. Dingley Electron Backscatter Diffraction in Materials Science , 2000 .

[37]  T. Gao,et al.  Combinatorial study of Fe-Co-V hard magnetic thin films , 2017, Science and technology of advanced materials.

[38]  L. Froyen,et al.  Fundamentals of Selective Laser Melting of alloyed steel powders , 2006 .

[39]  J. Saal,et al.  Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling , 2018 .

[40]  D. Raabe,et al.  Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy , 2017 .

[41]  M. Gibson,et al.  A Combinatorial Approach to the Investigation of Metal Systems that Form Both Bulk Metallic Glasses and High Entropy Alloys , 2016 .

[42]  G. Lawes,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 1987 .

[43]  A. Weisheit,et al.  Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design , 2017 .

[44]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[45]  C. Tasan,et al.  Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys , 2017, Scientific Reports.

[46]  William D. Nix,et al.  A method for interpreting the data from depth-sensing indentation instruments , 1986 .

[47]  David B. Williams,et al.  The Transmission Electron Microscope , 2009 .

[48]  Dierk Raabe,et al.  Combinatorial Alloy Design by Laser Additive Manufacturing , 2017 .

[49]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[50]  Jeffrey O White,et al.  Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials , 2004, Nature materials.

[51]  Dierk Raabe,et al.  From High‐Entropy Alloys to High‐Entropy Steels , 2015 .

[52]  Dierk Raabe,et al.  Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution , 2018 .

[53]  Thomas J. Wyrobek,et al.  Nanomechanical property screening of combinatorial thin-film libraries by nanoindentation , 2004 .

[54]  D. Raabe,et al.  Strain Rate Sensitivity of a TRIP-Assisted Dual-Phase High-Entropy Alloy , 2018, Front. Mater..

[55]  S. S. Nene,et al.  Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy , 2017, Scientific Reports.

[56]  M. Wuttig,et al.  Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width , 2006, Nature materials.

[57]  M. Kaufman,et al.  The use of diffusion multiples to examine the compositional dependence of phase stability and hardness of the Co-Cr-Fe-Mn-Ni high entropy alloy system , 2016 .

[58]  Dierk Raabe,et al.  Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial desi , 2012 .

[59]  H. Stein,et al.  Accelerated atomic-scale exploration of phase evolution in compositionally complex materials , 2018 .

[60]  A. Ludwig,et al.  Development of multifunctional thin films using high-throughput experimentation methods , 2008 .

[61]  L. Brewer,et al.  A Diffusion Multiple Approach for the Accelerated Design of Structural Materials , 2002 .

[62]  D. Raabe,et al.  Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity , 2017 .

[63]  Kathryn J. Wahl,et al.  Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation , 2001 .

[64]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[65]  Mukul Kumar,et al.  Electron Backscatter Diffraction in Materials Science , 2000 .

[66]  J. Dahn,et al.  Production and visualization of quaternary combinatorial thin films , 2006 .

[67]  B. Fultz,et al.  Transmission electron microscopy and diffractometry of materials , 2001 .

[68]  Xinhua Wu,et al.  Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys , 2015 .

[69]  Gerard Paul Leyson,et al.  Lattice Distortions in the FeCoNiCrMn High Entropy Alloy Studied by Theory and Experiment , 2016, Entropy.

[70]  Alfred Ludwig,et al.  A structure zone diagram obtained by simultaneous deposition on a novel step heater: A case study for Cu2O thin films , 2015 .