Development of a Flexible Robotic System for Multiscale Applications of Micro/Nanoscale Manipulation and Assembly

A flexible robotic system (FRS) developed for multiscale manipulation and assembly from nanoscale to microscale is presented. This system is based on the principle of atomic force microscopy and comprises two individually functionalized cantilevers. After reconfiguration, the robotic system could be used for pick-and-place manipulation from nanoscale to the scale of several micrometers, as well as parallel imaging/nanomanipulation. Flexibilities and manipulation capabilities of the developed system were validated by pick-and-place manipulation of microspheres and silicon nanowires to build 3-D micro/nanoscale structures in ambient conditions. Moreover, the capability of parallel nanomanipulation is certified by high-efficiency fabrication of a 2-D pattern with nanoparticles. Complicated micro/nanoscale manipulation and assembly can be reliably and efficiently performed using the proposed FRS.

[1]  M. Rakotondrabe,et al.  Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage. , 2009, The Review of scientific instruments.

[2]  Arnaud Magrez,et al.  Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling , 2007 .

[3]  Bradley J. Nelson,et al.  A micro-particle positioning technique combining an ultrasonic manipulator and a microgripper , 2006 .

[4]  Stephane Regnier,et al.  Simulation of micro-manipulations: Adhesion forces and specific dynamic models , 1999 .

[5]  Hui Xie,et al.  Three-dimensional automated micromanipulation using a nanotip gripper with multi-feedback , 2009 .

[6]  Metin Sitti,et al.  Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments , 2003 .

[7]  Fumihito Arai,et al.  DESTRUCTIVE CONSTRUCTION OF NANOSTRUCTURES WITH CARBON NANOTUBES , 2002 .

[8]  Madhukar,et al.  Manipulation of gold nanoparticles in liquid environments using scanning force microscopy , 2000, Ultramicroscopy.

[9]  Sergej Fatikow,et al.  Microrobot System for Automatic Nanohandling Inside a Scanning Electron Microscope , 2007 .

[10]  Yuechao Wang,et al.  Sensor Referenced Real-Time Videolization of Atomic Force Microscopy for Nanomanipulations , 2008, IEEE/ASME Transactions on Mechatronics.

[11]  Yu Sun,et al.  Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback , 2008 .

[12]  Stephane Regnier,et al.  Micro manipulation by adhesion with two collaborating mobile micro robots , 2005 .

[13]  M. Savia,et al.  Contact Micromanipulation—Survey of Strategies , 2009, IEEE/ASME Transactions on Mechatronics.

[14]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[15]  P. Dario,et al.  From "macro" to "micro" manipulation: models and experiments , 2004, IEEE/ASME Transactions on Mechatronics.

[16]  Bradley J. Nelson,et al.  Tutorial - Robotics in the small Part II: Nanorobotics , 2007, IEEE Robotics & Automation Magazine.

[17]  Guangyong Li,et al.  Development of augmented reality system for AFM-based nanomanipulation , 2004, IEEE/ASME Transactions on Mechatronics.

[18]  Hui Xie,et al.  A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly , 2009, Nanotechnology.

[19]  Fumihito Arai,et al.  Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations , 2003, Proc. IEEE.

[20]  Stéphane Régnier,et al.  Touching the microworld with force-feedback optical tweezers. , 2009, Optics express.

[21]  D. S. Haliyo,et al.  Parallel imaging/manipulation force microscopy , 2009 .

[22]  Stephane Regnier,et al.  Electrostatic actuated micro gripper using an amplification mechanism , 2004 .

[23]  Hwee Choo Liaw,et al.  Neural Network Motion Tracking Control of Piezo-Actuated Flexure-Based Mechanisms for Micro-/Nanomanipulation , 2009, IEEE/ASME Transactions on Mechatronics.

[24]  C. Clevy,et al.  Modeling, fabrication, and validation of a high-performance 2-DoF piezoactuator for micromanipulation , 2005, IEEE/ASME Transactions on Mechatronics.

[25]  W. G. Matthews,et al.  Controlled manipulation of molecular samples with the nanoManipulator , 2000 .

[26]  M. Sitti Atomic force microscope probe based controlled pushing for nanotribological characterization , 2004, IEEE/ASME Transactions on Mechatronics.

[27]  H. Hashimoto,et al.  Controlled pushing of nanoparticles: modeling and experiments , 2000 .

[28]  Cagdas D. Onal,et al.  Visual Servoing-Based Autonomous 2-D Manipulation of Microparticles Using a Nanoprobe , 2007, IEEE Transactions on Control Systems Technology.

[29]  Hideki Hashimoto,et al.  Scaled teleoperation system for nano-scale interaction and manipulation , 2003, Adv. Robotics.

[30]  Sitti Metin Teleoperated 2-D Micro/Nanomanipulation Using Atomic Force Microscope , 1999 .

[31]  K. Mølhave,et al.  Pick-and-place nanomanipulation using microfabricated grippers , 2006, Nanotechnology.

[32]  Jake J. Abbott,et al.  Robotics in the Small, Part I: Microbotics , 2007, IEEE Robotics & Automation Magazine.

[33]  Michaël Gauthier,et al.  Principle of a Submerged Freeze Gripper for Microassembly , 2008, IEEE Transactions on Robotics.

[34]  M.B. Khamesee,et al.  Design and Implementation of a Micromanipulation System Using a Magnetically Levitated MEMS Robot , 2009, IEEE/ASME Transactions on Mechatronics.

[35]  Sanghun Kim,et al.  Manipulation of freestanding Au nanogears using an atomic force microscope , 2007 .