Impact response of metastable dual-phase high-entropy alloy Cr10Mn30Fe50Co10

[1]  L. Lu,et al.  Shock Compression and Spall Damage of Dendritic High-Entropy Alloy Cocrfenicu , 2023, SSRN Electronic Journal.

[2]  L. Lu,et al.  Taylor impact of high-entropy alloy Al0.1CoCrFeNi: Dynamic severe plastic deformation and bulk gradient structure , 2023, Journal of Alloys and Compounds.

[3]  P. Liaw,et al.  A review on the dynamic-mechanical behaviors of high-entropy alloys , 2023, Progress in Materials Science.

[4]  F. Zhao,et al.  Deformation and damage of equiatomic CoCrFeNi high-entropy alloy under plate impact loading , 2022, Materials Science and Engineering: A.

[5]  Qian Zhang,et al.  Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension , 2022, International Journal of Plasticity.

[6]  Jin-Seob Kim,et al.  Grain size-dependent phase-specific deformation mechanisms of the Fe50Mn30Co10Cr10 high entropy alloy , 2022, Materials Science and Engineering: A.

[7]  I. Beyerlein,et al.  Phase transition in medium entropy alloy CoCrNi under quasi-isentropic compression , 2022, International Journal of Plasticity.

[8]  Y. Cai,et al.  Dynamic mechanical properties, deformation and damage mechanisms of eutectic high-entropy alloy AlCoCrFeNi21 under plate impact , 2022, Journal of Materials Science & Technology.

[9]  J. Li,et al.  Shock compression and spallation of a medium-entropy alloy Fe40Mn20Cr20Ni20 , 2022, Materials Science and Engineering: A.

[10]  L. Lu,et al.  Shock compression and spallation damage of high-entropy alloy Al01CoCrFeNi , 2022, Journal of Materials Science & Technology.

[11]  Y. Cai,et al.  Deformation and damage of heterogeneous-structured high-entropy alloy CrMnFeCoNi under plate impact , 2022, Materials Science and Engineering: A.

[12]  R. Hixson,et al.  Dynamic properties of FeCrMnNi, a high entropy alloy , 2022, Materials Science and Engineering: A.

[13]  Xiongbo Yan,et al.  Deformation mechanisms of TRIP–TWIP medium-entropy alloys via molecular dynamics simulations , 2022, International Journal of Mechanical Sciences.

[14]  Ji Hoon Kim,et al.  Temperature-dependent universal dislocation structures and transition of plasticity enhancing mechanisms of the Fe40Mn40Co10Cr10 high entropy alloy , 2021, International Journal of Plasticity.

[15]  S. Luo,et al.  Effects of shock-induced phase transition on spallation of a mild carbon steel , 2021, International Journal of Mechanical Sciences.

[16]  Zhihua Wang,et al.  Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi , 2021, Acta Materialia.

[17]  F. Yuan,et al.  Hetero-deformation-induced (HDI) plasticity induces simultaneous increase in both yield strength and ductility in a Fe50Mn30Co10Cr10 high-entropy alloy , 2021, Applied Physics Letters.

[18]  X. Gong,et al.  Deformation dynamics and pre-compression effects on Mg-3Al-1Zn alloy: An in situ synchrotron-based multiscale study , 2021 .

[19]  Yong Zhang,et al.  Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy , 2021, Nano Research.

[20]  T. Yuan,et al.  Additive manufacturing of TRIP-assisted dual-phases Fe50Mn30Co10Cr10 high-entropy alloy: Microstructure evolution, mechanical properties and deformation mechanisms , 2021 .

[21]  Yanfei Gao,et al.  Mechanical behavior of high-entropy alloys , 2021, Progress in Materials Science.

[22]  Junaid Ahmed,et al.  Yield strength insensitivity in a dual-phase high entropy alloy after prolonged high temperature annealing , 2021, Materials Science and Engineering: A.

[23]  R. Jamaati,et al.  Simultaneous enhancement of strength and ductility in ferrite-martensite steel via increasing the martensite fraction , 2021 .

[24]  Haimin Wang,et al.  Effects of the phase content on dynamic damage evolution in Fe50Mn30Co10Cr10 high entropy alloy , 2021 .

[25]  R. Ritchie,et al.  Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy , 2021, Science Advances.

[26]  Haimin Wang,et al.  Effects of microstructure on the evolution of dynamic damage of Fe50Mn30Co10Cr10 high entropy alloy , 2020 .

[27]  I. Beyerlein,et al.  Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi , 2020 .

[28]  Yongfeng Shen,et al.  The effect of strain rate on mechanical properties and microstructure of a metastable FeMnCoCr high entropy alloy , 2020 .

[29]  A. Zarei‐Hanzaki,et al.  The enhanced static recrystallization kinetics of a non-equiatomic high entropy alloy through the reverse transformation of strain induced martensite , 2019, Journal of Alloys and Compounds.

[30]  Priyanka Agrawal,et al.  On the evolving nature of c/a ratio in a hexagonal close-packed epsilon martensite phase in transformative high entropy alloys , 2019, Scientific Reports.

[31]  R. Ritchie,et al.  Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys , 2019, Progress in Materials Science.

[32]  Chang Li,et al.  Deformation twinning in a mild steel: Loading dependence and strengthening , 2019, Materials Science and Engineering: A.

[33]  Xianghui Xiao,et al.  Anisotropic deformation and damage of dual-phase Ti-6Al-4V under high strain rate loading , 2019, Materials Science and Engineering: A.

[34]  Rajiv S. Mishra,et al.  Unexpected strength–ductility response in an annealed, metastable, high-entropy alloy , 2018, Applied Materials Today.

[35]  K. An,et al.  Deformation mechanisms and work-hardening behavior of transformation-induced plasticity high entropy alloys by in -situ neutron diffraction , 2018, Materials Research Letters.

[36]  D. Raabe,et al.  Bidirectional Transformation Enables Hierarchical Nanolaminate Dual‐Phase High‐Entropy Alloys , 2018, Advanced materials.

[37]  Yang Ren,et al.  In situ high-energy X-ray diffraction investigation of the micromechanical behavior of Fe-0.1C-10Mn-0/2Al steel at room and elevated temperatures , 2018, Materials Science and Engineering: A.

[38]  Wei Zhang,et al.  Martensite transformation behavior and mechanical properties of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless steels , 2018 .

[39]  F. Yuan,et al.  Dynamic Shear Deformation of a CrCoNi Medium-Entropy Alloy with Heterogeneous Grain Structures , 2018, Heterostructured Materials.

[40]  L. Lu,et al.  Intragranular void formation in shock-spalled tantalum: Mechanisms and governing factors , 2018 .

[41]  J. Kim,et al.  Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures , 2018 .

[42]  B. Zhang,et al.  Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy , 2017 .

[43]  Xianghui Xiao,et al.  Effects of structural anisotropy on deformation and damage of a duplex stainless steel under high strain rate loading , 2017 .

[44]  Tong-Yi Zhang,et al.  Shear and shuffling accomplishing polymorphic fcc γ → hcp ε → bct α martensitic phase transformation , 2017 .

[45]  T. Sun,et al.  Multiscale measurements on temperature-dependent deformation of a textured magnesium alloy with synchrotron x-ray imaging and diffraction , 2017 .

[46]  Ke An,et al.  Phase‐Transformation Ductilization of Brittle High‐Entropy Alloys via Metastability Engineering , 2017, Advanced materials.

[47]  C. Tasan,et al.  A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior , 2017 .

[48]  Jinyuan Yan,et al.  Polymorphism in a high-entropy alloy , 2017, Nature Communications.

[49]  C. Tasan,et al.  Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys , 2017, Scientific Reports.

[50]  Hongbin Bei,et al.  High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi , 2016, Nature Communications.

[51]  T. Sun,et al.  Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: A study with simultaneous in situ synchrotron x-ray imaging and diffraction , 2016 .

[52]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[53]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[54]  C. Cayron Angular distortive matrices of phase transitions in the fcc–bcc–hcp system , 2016 .

[55]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[56]  K. Lu Stabilizing nanostructures in metals using grain and twin boundary architectures , 2016 .

[57]  J. Vo,et al.  Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals , 2015, Metallurgical and Materials Transactions A.

[58]  Kevin Hughes,et al.  Lagrangian analysis led design of a shock recovery plate impact experiment , 2015 .

[59]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[60]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[61]  T. Chauveau,et al.  Texture, misorientation and mechanical anisotropy in a deformed dual phase stainless steel weld joint , 2013 .

[62]  E. Cerreta,et al.  Influence of boundary structure and near neighbor crystallographic orientation on the dynamic damage evolution during shock loading , 2013 .

[63]  Y. Zhu,et al.  Observation of twins in polycrystalline cobalt containing face-center-cubic and hexagonal-close-packed phases , 2011 .

[64]  S. Greenfield,et al.  Statistics of weak grain boundaries for spall damage in polycrystalline copper , 2010 .

[65]  M. Meyers,et al.  Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects , 2010 .

[66]  D. Dolan,et al.  Accuracy and precision in photonic Doppler velocimetry. , 2010, The Review of scientific instruments.

[67]  A. Molinari,et al.  Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum , 2008 .

[68]  S. Turteltaub,et al.  Grain size effects in multiphase steels assisted by transformation-induced plasticity , 2006 .

[69]  O. Strand,et al.  Compact system for high-speed velocimetry using heterodyne techniques , 2006 .

[70]  G. T. Gray,et al.  Computational design of recovery experiments for ductile metals , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  Tae-Ho Lee,et al.  A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel , 2004 .

[72]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[73]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[74]  Marc A. Meyers,et al.  Void growth by dislocation emission , 2004 .

[75]  Takeshi Iwamoto,et al.  Computational simulation of the dependence of the austenitic grain size on the deformation behavior of TRIP steels , 2000 .

[76]  D. Perovic,et al.  Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys , 1999 .

[77]  M. Meyers Dynamic Behavior of Materials , 1994 .

[78]  C. M. Wayman,et al.  On secondary variants formed at intersections of ϵ martensite variants , 1992 .

[79]  Lynn Seaman,et al.  Dynamic failure of solids , 1987 .

[80]  R. Mcqueen,et al.  Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa , 1986 .

[81]  M. Loretto,et al.  Direct observations of martensite nuclei in stainless steel , 1979 .

[82]  A. Rabinkin,et al.  A study of γ → ε phase transformation in FeMn alloys induced by high pressure and plastic deformation , 1978 .

[83]  D. J. Silversmith,et al.  A Modified Ultrasonic Pulse‐Echo‐Overlap Method for Determining Sound Velocities and Attenuation of Solids , 1969 .

[84]  I. Beyerlein,et al.  Shock-induced amorphization in medium entropy alloy CoCrNi , 2022, Scripta Materialia.

[85]  Z. D. Feng,et al.  Phase transitions in additively manufactured high-entropy alloy Cr10Mn10 , 2022, Scripta Materialia.

[86]  Dennis E. Grady,et al.  The spall strength of condensed matter , 1988 .

[87]  G. V. Stepanov,et al.  Dependence of the critical stresses on the loading time parameters during spall in copper, aluminum, and steel , 1980 .