Modeling and reach-set computation for analysis and optimal control of discrete hybrid automata

In this thesis we present a computational framework for modeling hybrid systems in discrete-time. We introduce the class of discrete hybrid automata (DHA) and show its relation with several other existing model paradigms: piecewise affine systems, mixed-logical dynamical systems, (extended) linear complementarity systems, and min-max-plus-scaling systems. We present the language HYSDEL (HYbrid Systems DEscription Language), a high level modeling language for DHA, and a set of tools for translating DHA into any of the hybrid models mentioned above. We provide a tool to compute the real combinatorial degree of a compositional DHA. This information can be used to reduce the size of the search tree and the computational time of the optimization algorithms underlying optimal and model predictive control. In order to solve analysis and control problems of hybrid systems, we extend the tools for polyhedral computation to deal with general problems. We address the issue of recognizing the convexity of the union of two or more polyhedra and the computation of the convex union. We also propose several techniques for approximating a polytope by a collection of axis parallel boxes. We present a methodology for computing the set of states that a discrete-time affine hybrid system can reach by starting from a given set of initial conditions and under the effect of exogenous inputs to the system, such as disturbances, within a prescribed range. The importance of providing an efficient tool to compute this set is twofold. First, we show how to use reachability analysis to assess robust stability, safety, and liveness properties of the hybrid system. Second, we show how the reach-set computation machinery can be embedded in an optimization procedure to solve quite general hybrid optimal control problems. Several examples and applications show the versatility of the presented tools. Among others, we present an automotive application where we model a power train using HYSDEL, we synthesize an optimal controller and we analyze an alternative heuristic cruise controller. We also discuss the application of our verification procedure to the batch evaporator benchmark problem. Finally we show how a combination of multi-parametric quadratic programming and reachability analysis solves the infinite-time constrained linear quadratic regulator problem. The algorithm outperforms all comparable multiparametric

[1]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[2]  Brian D. O. Anderson,et al.  Linear Optimal Control , 1971 .

[3]  Manfred Morari,et al.  Modeling and control of co-generation power plants: a hybrid system approach , 2004, IEEE Trans. Control. Syst. Technol..

[4]  L. Chisci,et al.  Fast algorithm for a constrained infinite horizon LQ problem , 1999 .

[5]  M. Morari,et al.  Moving horizon estimation for hybrid systems , 2002, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[6]  V. D. Dimitriadis,et al.  Modeling and safety verification of discrete/continuous processing systems , 1997 .

[7]  Wang Yi,et al.  New Generation of UPPAAL , 1998 .

[8]  Alberto Bemporad,et al.  Discrete-time Hybrid Modeling and Verification of the Batch Evaporator Process Benchmark , 2001, Eur. J. Control.

[9]  John N. Tsitsiklis,et al.  Complexity of stability and controllability of elementary hybrid systems , 1999, Autom..

[10]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[11]  B. De Moor,et al.  The extended linear complementarity problem , 1995, Math. Program..

[12]  Bruce H. Krogh,et al.  Verification of Polyhedral-Invariant Hybrid Automata Using Polygonal Flow Pipe Approximations , 1999, HSCC.

[13]  David L. Dill,et al.  Timing Assumptions and Verification of Finite-State Concurrent Systems , 1989, Automatic Verification Methods for Finite State Systems.

[14]  Jürg Nievergelt,et al.  The parallel search bench ZRAM and its applications , 1999, Ann. Oper. Res..

[15]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[16]  Thomas A. Henzinger,et al.  Beyond HYTECH: Hybrid Systems Analysis Using Interval Numerical Methods , 2000, HSCC.

[17]  Manfred Morari,et al.  Analysis of Piecewise Affine Systems with Logic States , 2002 .

[18]  Christos G. Cassandras,et al.  Introduction to Discrete Event Systems , 1999, The Kluwer International Series on Discrete Event Dynamic Systems.

[19]  M. Branicky,et al.  Algorithms for optimal hybrid control , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[20]  M. Morari,et al.  Model predictive control — Ideas for the next generation , 1999, 1999 European Control Conference (ECC).

[21]  Stavros Tripakis,et al.  The Tool KRONOS , 1996, Hybrid Systems.

[22]  Jacques Cohen,et al.  Two Algorithms for Determining Volumes of Convex Polyhedra , 1979, JACM.

[23]  A. Bemporad,et al.  Efficient on-line computation of constrained optimal control , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[24]  Alberto Bemporad,et al.  Inner and outer approximations of polytopes using boxes , 2004, Comput. Geom..

[25]  Alberto Bemporad,et al.  Moving horizon estimation for hybrid systems and fault detection , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[26]  Alberto Bemporad,et al.  A Hybrid Approach to Traction Control , 2001, HSCC.

[27]  Bruce H. Krogh,et al.  Computational techniques for hybrid system verification , 2003, IEEE Trans. Autom. Control..

[28]  A. Giua,et al.  Optimal control of autonomous linear systems switched with a pre-assigned finite sequence , 2001, Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206).

[29]  F. Borrelli Discrete time constrained optimal control , 2002 .

[30]  Amir Pnueli,et al.  Orthogonal Polyhedra: Representation and Computation , 1999, HSCC.

[31]  Komei Fukuda,et al.  From the zonotope construction to the Minkowski addition of convex polytopes , 2004, J. Symb. Comput..

[32]  Peter Gritzmann,et al.  On the complexity of some basic problems in computational convexity: I. Containment problems , 1994, Discret. Math..

[33]  Alberto Bemporad,et al.  Convexity recognition of the union of polyhedra , 2001, Comput. Geom..

[34]  A. Rantzer,et al.  Optimal control of hybrid systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[35]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[36]  B. Schutter,et al.  On the equivalence of classes of hybrid dynamical models , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[37]  Alberto Bemporad,et al.  A hybrid system approach to modeling and optimal control of DISC engines , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[38]  Egon Balas On the convex hull of the union of certain polyhedra , 1988 .

[39]  B. Curtis Eaves,et al.  Optimal scaling of balls and polyhedra , 1982, Math. Program..

[40]  Jean-Albert Ferrez,et al.  Cuts, zonotopes and arrangements , 2001 .

[41]  Alberto Bemporad,et al.  miqp. m: a Matlab function for solving Mixed Integer Quadratic Programs Version 1.02 - User Guide , 2000 .

[42]  Alberto Bemporad,et al.  An efficient technique for translating mixed logical dynamical systems into piecewise affine systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[43]  R. D'Andrea,et al.  Modeling and control of a multi-agent system using mixed integer linear programming , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[44]  Olivier Bournez,et al.  Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems , 2000, HSCC.

[45]  D. Chmielewski,et al.  On constrained infinite-time linear quadratic optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[46]  Xuemin Lin,et al.  A Fast and Effective Heuristic for the Feedback Arc Set Problem , 1993, Inf. Process. Lett..

[47]  W. Heemels Linear complementarity systems : a study in hybrid dynamics , 1999 .

[48]  Amir Pnueli,et al.  Data-Structures for the Verification of Timed Automata , 1997, HART.

[49]  Alberto Bemporad,et al.  Performance driven reachability analysis for optimal scheduling and control of hybrid systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[50]  A. Giua,et al.  Optimal control of switched autonomous linear systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[51]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[52]  Kim G. Larsen,et al.  Minimum-Cost Reachability for Priced Timed Automata , 2001, HSCC.

[53]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[54]  M. Morari,et al.  Optimal controllers for hybrid systems: stability and piecewise linear explicit form , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[55]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[56]  Christos G. Cassandras,et al.  Optimal control of a two-stage hybrid manufacturing system model , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[57]  W. Heemels,et al.  Linear complimentarity systems , 2000 .

[58]  Calin Belta,et al.  Hybrid Modeling and Simulation of Biomolecular Networks , 2001, HSCC.

[59]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[60]  L. Ljung,et al.  Identification of hybrid systems via mixed-integer programming , 2001 .

[61]  W. Heemels,et al.  Consistency of a time-stepping method for a class of piecewise-linear networks , 2002 .

[62]  Alberto Bemporad,et al.  Robust Simulation of Nonlinear Electronic Circuits , 2000 .

[63]  Alberto Bemporad,et al.  Synthesis of state-feedback optimal controllers for switched linear systems , 2002 .

[64]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[65]  C. Pinello,et al.  Automotive engine control and hybrid systems: challenges and opportunities , 2000, Proceedings of the IEEE.

[66]  James B. Orlin,et al.  On the complexity of four polyhedral set containment problems , 2018, Math. Program..

[67]  Bruce H. Krogh,et al.  Verification of infinite-state dynamic systems using approximate quotient transition systems , 2001, IEEE Trans. Autom. Control..

[68]  Alberto Bemporad,et al.  On the Optimal Control Law for Linear Discrete Time Hybrid Systems , 2002, HSCC.

[69]  N.R. Malik,et al.  Graph theory with applications to engineering and computer science , 1975, Proceedings of the IEEE.

[70]  David Avis A C Implementation of the Reverse Search Vertex Enumeration Algorithm(Computational Geometry and Discrete Geometry) , 1994 .

[71]  Alberto Bemporad,et al.  Optimization-Based Verification and Stability Characterization of Piecewise Affine and Hybrid Systems , 2000, HSCC.

[72]  David Avis,et al.  How good are convex hull algorithms? , 1995, SCG '95.

[73]  R. Buck Partition of Space , 1943 .

[74]  Thomas M. Liebling,et al.  Extended convex hull , 2001, Comput. Geom..

[75]  Efstratios N. Pistikopoulos,et al.  An Algorithm for the Solution of Multiparametric Mixed Integer Linear Programming Problems , 2000, Ann. Oper. Res..

[76]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[77]  Thomas A. Henzinger,et al.  Modularity for Timed and Hybrid Systems , 1997, CONCUR.

[78]  Stavros Tripakis,et al.  Verification of Hybrid Systems with Linear Differential Inclusions Using Ellipsoidal Approximations , 2000, HSCC.

[79]  Oded Maler,et al.  Reachability Analysis via Face Lifting , 1998, HSCC.

[80]  Vijay Kumar,et al.  Hierarchical Hybrid Modeling of Embedded Systems , 2001, EMSOFT.

[81]  Alberto Bemporad,et al.  Verification of Hybrid Systems via Mathematical Programming , 1999, HSCC.

[82]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[83]  Alberto Bemporad,et al.  Performance analysis of piecewise linear systems and model predictive control systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).