The Mixed Virtual Element Method on curved edges in two dimensions

In this work, we propose an extension of the mixed Virtual Element Method (VEM) for bi-dimensional computational grids with curvilinear edge elements. The approximation by means of rectilinear edges of a domain with curvilinear geometrical feature, such as a portion of domain boundary or an internal interface, may introduce a geometrical error that degrades the expected order of convergence of the scheme. In the present work a suitable VEM approximation space is proposed to consistently handle curvilinear geometrical objects, thus recovering optimal convergence rates. The resulting numerical scheme is presented along with its theoretical analysis and several numerical test cases to validate the proposed approach.

[1]  Alessio Fumagalli,et al.  Dual virtual element method in presence of an inclusion , 2017, Appl. Math. Lett..

[2]  E. Keilegavlen,et al.  Dual Virtual Element Methods for Discrete Fracture Matrix models , 2019, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles.

[3]  M. Lenoir Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .

[4]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[5]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[6]  Douglas N. Arnold,et al.  Quadrilateral H(div) Finite Elements , 2004, SIAM J. Numer. Anal..

[7]  Alessio Fumagalli,et al.  Dual Virtual Element Method for Discrete Fractures Networks , 2016, SIAM J. Sci. Comput..

[8]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[9]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[10]  Alexander Pichler,et al.  A virtual element method for the miscible displacement of incompressible fluids in porous media , 2019, Computer Methods in Applied Mechanics and Engineering.

[11]  Giancarlo Sangalli,et al.  Optimal-order isogeometric collocation at Galerkin superconvergent points , 2016, 1609.01971.

[12]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[13]  L. Beirao da Veiga,et al.  The Virtual Element Method with curved edges , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[14]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[15]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[16]  Franco Dassi,et al.  Bricks for the mixed high-order virtual element method: Projectors and differential operators , 2018, Applied Numerical Mathematics.

[17]  G. Burton Sobolev Spaces , 2013 .

[18]  F. Brezzi,et al.  Virtual Elements and curved edges , 2019, ArXiv.

[19]  Ricardo G. Durán,et al.  Error Estimates for the Raviart-Thomas Interpolation Under the Maximum Angle Condition , 2008, SIAM J. Numer. Anal..

[20]  Stefano Scialò,et al.  Mixed Virtual Elements for discrete fracture network simulations , 2017 .

[21]  A. R. Mitchell,et al.  Curved elements in the finite element method , 1974 .

[22]  Daniele A. Di Pietro,et al.  Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods , 2018, J. Comput. Phys..

[23]  L. Beirao da Veiga,et al.  H(div) and H(curl)-conforming VEM , 2014, 1407.6822.

[24]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[25]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[26]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[27]  Alessio Fumagalli,et al.  Performances of the mixed virtual element method on complex grids for underground flow , 2020, Polyhedral Methods in Geosciences.

[28]  Stefano Berrone,et al.  A hybrid mortar virtual element method for discrete fracture network simulations , 2016, J. Comput. Phys..

[29]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[30]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[31]  Silvia Bertoluzza,et al.  High order VEM on curved domains , 2018, Rendiconti Lincei - Matematica e Applicazioni.

[32]  Franco Dassi,et al.  Adaptive virtual element methods with equilibrated flux , 2020, ArXiv.