A Particle-Partition of Unity Method-Part III: A Multilevel Solver

In this sequel to part I [SIAM J. Sci. Comput., 22 (2000), pp. 853--890] and part II [SIAM J. Sci. Comput., 23 (2002), pp. 1655--1682] we focus on the efficient solution of the linear block-systems arising from a Galerkin discretization of an elliptic partial differential equation of second order with the partition of unity method (PUM). We present a cheap multilevel solver for partition of unity (PU) discretizations of any order. The shape functions of a PUM are products of piecewise rational PU functions $\varphi_i$ with $\supp(\varphi_i)=\omega_i$ and higher order local approximation functions $\psi_i^n$ (usually a local polynomial of degree $\leq p_i$). Furthermore, they are noninterpolatory. In a multilevel approach we have to cope with not only noninterpolatory basis functions but also with a sequence of nonnested spaces due to the meshfree construction. Hence, injection or interpolatory interlevel transfer operators are not available for our multilevel PUM. Therefore, the remaining natural choice for the prolongation operators are L2-projections. Here, we exploit the PUM construction of the function spaces and a hierarchical construction of the PU itself to localize the corresponding projection problem. This significantly reduces the computational costs associated with the setup and the application of the interlevel transfer operators. The second main ingredient of our multilevel solver is the use of a block-smoother to treat the local approximation functions $\psi_i^n$ for all $n$ simultaneously. The results of our numerical experiments in two and three dimensions show that the convergence rate of the proposed multilevel solver is independent of the number of patches $\card(\{\omega_i\})$. The convergence rate is slightly dependent on the local approximation orders pi.

[1]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[2]  J. Monaghan Why Particle Methods Work , 1982 .

[3]  Olof B. Widlund,et al.  A Polylogarithmic Bound for an Iterative Substructuring Method for Spectral Elements in Three Dimensions , 1996 .

[4]  Michael Griebel,et al.  A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..

[5]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[6]  D. Braess,et al.  Multigrid methods for nonconforming finite element methods , 1990 .

[7]  Gregory E. Fasshauer,et al.  Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..

[8]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[9]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[10]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[11]  Carsten Franke,et al.  Convergence order estimates of meshless collocation methods using radial basis functions , 1998, Adv. Comput. Math..

[12]  Rheinische Friedrich-Wilhelms-UniversitBonn,et al.  Partikel-Galerkin-Verfahren mit Ansatzfunktionen der Partition of Unity Method , 1997 .

[13]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part II: Efficient Cover Construction and Reliable Integration , 2001, SIAM J. Sci. Comput..

[14]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part IV: Parallelization , 2003 .

[15]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[16]  Michael Griebel,et al.  Dynamic Load-balancing of Hierarchical Tree Algorithms on a Cluster of Multiprocessor Pcs and on the Cray T3e , 1999 .

[17]  Susanne C. Brenner,et al.  Convergence of nonconforming multigrid methods without full elliptic regularity , 1999, Math. Comput..

[18]  W. Hackbusch,et al.  A New Convergence Proof for the Multigrid Method Including the V-Cycle , 1983 .

[19]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[20]  Wing Kam Liu,et al.  Implementation of boundary conditions for meshless methods , 1998 .

[21]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[22]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[23]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[24]  T. Liszka,et al.  hp-Meshless cloud method , 1996 .

[25]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[26]  N. Aluru A point collocation method based on reproducing kernel approximations , 2000 .

[27]  J. Pasciak,et al.  The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .

[28]  Peter Oswald Intergrid transfer operators and multilevel preconditioners for nonconforming discretizations , 1997 .

[29]  Axel Klar,et al.  Particle Methods: Theory and Applications , 1995 .