Free-Variable Tableaux for Constant-Domain Quantified Modal Logics with Rigid and Non-rigid Designation

This paper presents a sound and complete free-variable tableau calculus for constant-domain quantified modal logics, with a propositional analytical basis, i.e. one of the systems K, D, T, K4, S4. The calculus is obtained by addition of the classical free-variable ?-rule and the "liberalized" ?+-rule [14] to a standard set of propositional rules. Thus, the proposed system characterizes proof-theoretically the constant-domain semantics, which cannot be captured by "standard" (non-prefixed, non-annotated) ground tableau calculi. The calculi are extended so as to deal also with non-rigid designation, by means of a simple numerical annotation on functional symbols, conveying some semantical information about the worlds where they are meant to be interpreted.

[1]  Heinrich Wansing,et al.  Predicate Logics on Display , 1999, Stud Logica.

[2]  Luca Viganò,et al.  Labelled Modal Logics: Quantifiers , 1998, J. Log. Lang. Inf..

[3]  Marta Cialdea Resolution for Some First-Order Modal Systems , 1991, Theor. Comput. Sci..

[4]  Lincoln A. Wallen,et al.  Automated deduction in nonclassical logics , 1990 .

[5]  Natarajan Shankar,et al.  Proof search in first-order linear logic and other cut-free sequent calculi , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[6]  Patrice Enjalbert,et al.  Modal Theorem Proving: An Equational Viewpoint , 1989, IJCAI.

[7]  Hans Jürgen Ohlbach,et al.  Semantics-Based Translation Methods for Modal Logics , 1991, J. Log. Comput..

[8]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[9]  Martín Abadi,et al.  Modal Theorem Proving , 1986, CADE.

[10]  Kurt Konolige,et al.  Resolution and Quantified Epistemic Logics , 1986, CADE.

[11]  James W. Garson,et al.  Quantification in Modal Logic , 1984 .

[12]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[13]  Melvin Fitting,et al.  On Quantified Modal Logic , 1999, Fundam. Informaticae.

[14]  Marta Cialdea Mayer,et al.  Variants of First-Order Modal Logics , 2000, TABLEAUX.

[15]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[16]  Natarajan Shankar,et al.  Proof Search in the Intuitionistic Sequent Calculus , 1992, CADE.

[17]  Peter Jackson,et al.  A General Proof Method for First-Order Modal Logic , 1987, IJCAI.

[18]  Kit Fine,et al.  Failures of the interpolation lemma in quantified modal logic , 1979, Journal of Symbolic Logic.