A robust, interpolation‐free and monotone finite volume scheme for diffusion equations on arbitrary quadrilateral meshes

A novel monotone finite volume (FV) scheme on arbitrary quadrilateral meshes, such as extremely distorted meshes with concave, twisted, or even negative volume cells, is proposed to solve diffusion equations with discontinuous tensor coefficients. The first advantage of our scheme is that no auxiliary unknown is needed thus the efficiency and accuracy are improved. The second advantage is that the convex decomposition of the conormal vector relies only on the locations of cell centers and reduces geometric restrictions on cell shapes to preserve positivity. The difficulties of constructing discrete normal fluxes across the material interface are overcome by introducing primary unknowns on the opposite side of the interface into the discrete stencil with some virtual adjustments on their positions, based on the continuity of normal flux and tangent gradients. Numerical tests demonstrate that our new scheme is second‐order accurate, unconditionally monotone, and comparisons with some existing methods in terms of efficiency and accuracy are also given.

[1]  Jiming Wu,et al.  A nonlinear correction scheme for the heterogeneous and anisotropic diffusion problems on polygonal meshes , 2022, J. Comput. Phys..

[2]  Xiufang Feng,et al.  An FE-FD Method for Anisotropic Elliptic Interface Problems , 2020, SIAM J. Sci. Comput..

[3]  Zhiqiang Sheng,et al.  The finite volume scheme preserving maximum principle for diffusion equations with discontinuous coefficient , 2020, Comput. Math. Appl..

[4]  Zhiqiang Sheng,et al.  Monotone Finite Volume Schemes for Diffusion Equation with Imperfect Interface on Distorted Meshes , 2018, J. Sci. Comput..

[5]  Hamdi A. Tchelepi,et al.  Monotone nonlinear finite-volume method for challenging grids , 2018, Computational Geosciences.

[6]  Bernd Flemisch,et al.  Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes , 2017, J. Comput. Phys..

[7]  Guangwei Yuan,et al.  A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes , 2017, J. Comput. Phys..

[8]  Martin Schneider,et al.  Monotone nonlinear finite‐volume method for nonisothermal two‐phase two‐component flow in porous media , 2017 .

[9]  Bradley T. Mallison,et al.  Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem , 2017, J. Comput. Phys..

[10]  Jean-Sylvain Camier,et al.  A monotone nonlinear finite volume method for approximating diffusion operators on general meshes , 2016 .

[11]  Zhiqiang Sheng,et al.  A Cell-Centered Nonlinear Finite Volume Scheme Preserving Fully Positivity for Diffusion Equation , 2016, J. Sci. Comput..

[12]  Zhiming Gao,et al.  A Second-Order Positivity-Preserving Finite Volume Scheme for Diffusion Equations on General Meshes , 2015, SIAM J. Sci. Comput..

[13]  Jerome Droniou,et al.  FINITE VOLUME SCHEMES FOR DIFFUSION EQUATIONS: INTRODUCTION TO AND REVIEW OF MODERN METHODS , 2014, 1407.1567.

[14]  Clément Cancès,et al.  Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations , 2013, Numerische Mathematik.

[15]  Zhiming Gao,et al.  A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes , 2013, J. Comput. Phys..

[16]  Dragan Vidovic,et al.  Convex combinations for diffusion schemes , 2013, J. Comput. Phys..

[17]  Guangwei Yuan,et al.  Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations ☆ , 2012 .

[18]  Jérôme Droniou,et al.  Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..

[19]  Daniil Svyatskiy,et al.  A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..

[20]  Christophe Le Potier,et al.  A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators , 2009 .

[21]  Raphaèle Herbin,et al.  A nine point finite volume scheme for the simulation of diffusion in heterogeneous media , 2009 .

[22]  Daniil Svyatskiy,et al.  Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..

[23]  Zhiqiang Sheng,et al.  Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..

[24]  Daniil Svyatskiy,et al.  Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..

[25]  Ivar Aavatsmark,et al.  Monotonicity of control volume methods , 2007, Numerische Mathematik.

[26]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[27]  Weston M. Stacey,et al.  Fusion: An Introduction to the Physics and Technology of Magnetic Confinement Fusion , 1984 .

[28]  Jie Liu,et al.  Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model , 2017 .

[29]  Wanguo Zheng,et al.  Progress in octahedral spherical hohlraum study , 2016 .

[30]  X. Nogueira,et al.  Moving Kriging reconstruction for high-order finite volume computation of compressible flows , 2013 .