A robust, interpolation‐free and monotone finite volume scheme for diffusion equations on arbitrary quadrilateral meshes
暂无分享,去创建一个
K. Pan | Z. Ren | Xiaoxin Wu | G. Yuan | Yunlong Yu | Jin Li
[1] Jiming Wu,et al. A nonlinear correction scheme for the heterogeneous and anisotropic diffusion problems on polygonal meshes , 2022, J. Comput. Phys..
[2] Xiufang Feng,et al. An FE-FD Method for Anisotropic Elliptic Interface Problems , 2020, SIAM J. Sci. Comput..
[3] Zhiqiang Sheng,et al. The finite volume scheme preserving maximum principle for diffusion equations with discontinuous coefficient , 2020, Comput. Math. Appl..
[4] Zhiqiang Sheng,et al. Monotone Finite Volume Schemes for Diffusion Equation with Imperfect Interface on Distorted Meshes , 2018, J. Sci. Comput..
[5] Hamdi A. Tchelepi,et al. Monotone nonlinear finite-volume method for challenging grids , 2018, Computational Geosciences.
[6] Bernd Flemisch,et al. Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes , 2017, J. Comput. Phys..
[7] Guangwei Yuan,et al. A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes , 2017, J. Comput. Phys..
[8] Martin Schneider,et al. Monotone nonlinear finite‐volume method for nonisothermal two‐phase two‐component flow in porous media , 2017 .
[9] Bradley T. Mallison,et al. Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem , 2017, J. Comput. Phys..
[10] Jean-Sylvain Camier,et al. A monotone nonlinear finite volume method for approximating diffusion operators on general meshes , 2016 .
[11] Zhiqiang Sheng,et al. A Cell-Centered Nonlinear Finite Volume Scheme Preserving Fully Positivity for Diffusion Equation , 2016, J. Sci. Comput..
[12] Zhiming Gao,et al. A Second-Order Positivity-Preserving Finite Volume Scheme for Diffusion Equations on General Meshes , 2015, SIAM J. Sci. Comput..
[13] Jerome Droniou,et al. FINITE VOLUME SCHEMES FOR DIFFUSION EQUATIONS: INTRODUCTION TO AND REVIEW OF MODERN METHODS , 2014, 1407.1567.
[14] Clément Cancès,et al. Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations , 2013, Numerische Mathematik.
[15] Zhiming Gao,et al. A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes , 2013, J. Comput. Phys..
[16] Dragan Vidovic,et al. Convex combinations for diffusion schemes , 2013, J. Comput. Phys..
[17] Guangwei Yuan,et al. Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations ☆ , 2012 .
[18] Jérôme Droniou,et al. Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..
[19] Daniil Svyatskiy,et al. A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..
[20] Christophe Le Potier,et al. A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators , 2009 .
[21] Raphaèle Herbin,et al. A nine point finite volume scheme for the simulation of diffusion in heterogeneous media , 2009 .
[22] Daniil Svyatskiy,et al. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..
[23] Zhiqiang Sheng,et al. Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..
[24] Daniil Svyatskiy,et al. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..
[25] Ivar Aavatsmark,et al. Monotonicity of control volume methods , 2007, Numerische Mathematik.
[26] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[27] Weston M. Stacey,et al. Fusion: An Introduction to the Physics and Technology of Magnetic Confinement Fusion , 1984 .
[28] Jie Liu,et al. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model , 2017 .
[29] Wanguo Zheng,et al. Progress in octahedral spherical hohlraum study , 2016 .
[30] X. Nogueira,et al. Moving Kriging reconstruction for high-order finite volume computation of compressible flows , 2013 .