Specificity for homooligomer versus heterooligomer formation in integrin transmembrane helices.

[1]  Alessandro Senes,et al.  Consensus motif for integrin transmembrane helix association , 2009, Proceedings of the National Academy of Sciences.

[2]  Jun Qin,et al.  Structure of an integrin αIIbβ3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation , 2009, Proceedings of the National Academy of Sciences.

[3]  Chungho Kim,et al.  The structure of the integrin αIIbβ3 transmembrane complex explains integrin transmembrane signalling , 2009, The EMBO journal.

[4]  David Baker,et al.  The structure of a receptor with two associating transmembrane domains on the cell surface: integrin alphaIIbbeta3. , 2009, Molecular cell.

[5]  J. Torres,et al.  Disruption of the Integrin αLβ2 Transmembrane Domain Interface by β2 Thr-686 Mutation Activates αLβ2 and Promotes Micro-clustering of the αL Subunits* , 2009, Journal of Biological Chemistry.

[6]  A. Keating,et al.  Structural specificity in coiled-coil interactions. , 2008, Current opinion in structural biology.

[7]  W. DeGrado,et al.  Protein-protein interactions in the membrane: sequence, structural, and biological motifs. , 2008, Structure.

[8]  Anthony W Partridge,et al.  Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. , 2008, Biochemistry.

[9]  J. Falke,et al.  Structure of the conserved HAMP domain in an intact, membrane-bound chemoreceptor: a disulfide mapping study. , 2007, Biochemistry.

[10]  Gevorg Grigoryan,et al.  Structure-based prediction of bZIP partnering specificity. , 2006, Journal of molecular biology.

[11]  C. Vinson,et al.  Deciphering B-ZIP transcription factor interactions in vitro and in vivo. , 2006, Biochimica et biophysica acta.

[12]  J. Bennett,et al.  Structure and function of the platelet integrin αIIbβ3 , 2005 .

[13]  Tae-Joon Jeon,et al.  Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Junichi Takagi,et al.  Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Bowie,et al.  Transmembrane Domain Helix Packing Stabilizes Integrin αIIbβ3 in the Low Affinity State* , 2005, Journal of Biological Chemistry.

[16]  W. DeGrado,et al.  A push-pull mechanism for regulating integrin function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Wei Yang,et al.  The primacy of affinity over clustering in regulation of adhesiveness of the integrin αLβ2 , 2004, The Journal of cell biology.

[18]  J. Weisel,et al.  Functional and structural correlations of individual αIIbβ3 molecules , 2004 .

[19]  Vikas Nanda,et al.  Dimerization of the Transmembrane Domain of Integrin αIIb Subunit in Cell Membranes* , 2004, Journal of Biological Chemistry.

[20]  J. Takagi,et al.  A Specific Interface between Integrin Transmembrane Helices and Affinity for Ligand , 2004, PLoS biology.

[21]  Donald M. Engelman,et al.  Involvement of Transmembrane Domain Interactions in Signal Transduction by α/β Integrins* , 2004, Journal of Biological Chemistry.

[22]  A. Keating,et al.  Comprehensive Identification of Human bZIP Interactions with Coiled-Coil Arrays , 2003, Science.

[23]  Renhao Li,et al.  Activation of Integrin αIIbß3 by Modulation of Transmembrane Helix Associations , 2003, Science.

[24]  J. Parsons,et al.  Focal adhesion kinase: the first ten years , 2003, Journal of Cell Science.

[25]  Donald M. Engelman,et al.  GALLEX, a Measurement of Heterologous Association of Transmembrane Helices in a Biological Membrane* , 2003, The Journal of Biological Chemistry.

[26]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[27]  Junichi Takagi,et al.  Global Conformational Rearrangements in Integrin Extracellular Domains in Outside-In and Inside-Out Signaling , 2002, Cell.

[28]  Renhao Li,et al.  Oligomerization of the integrin αIIbβ3: Roles of the transmembrane and cytoplasmic domains , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Ming-Ming Zhou Phosphothreonine recognition comes into focus , 2000, Nature Structural Biology.

[30]  William F. DeGrado,et al.  Asparagine-mediated self-association of a model transmembrane helix , 2000, Nature Structural Biology.

[31]  D. Engelman,et al.  Interhelical hydrogen bonding drives strong interactions in membrane proteins , 2000, Nature Structural Biology.

[32]  D. Engelman,et al.  TOXCAT: a measure of transmembrane helix association in a biological membrane. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Fritz,et al.  Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. , 1996, Journal of molecular biology.

[34]  D. Engelman,et al.  Sequence specificity in the dimerization of transmembrane alpha-helices. , 1992, Biochemistry.

[35]  D. Engelman,et al.  The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. , 1992, Biochemistry.

[36]  J. Weisel,et al.  Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. , 1992, The Journal of biological chemistry.