Perception of mechanically and optically simulated bumps and holes

In this article, we investigate the perception of optically simulated haptic feedback. The perception of optically and mechanically simulated bumps and holes was tested experimentally. In an earlier article, we have described the active cursor technique, a method to simulate haptic feedback optically without resorting to special mechanical force feedback devices, commonly applied to produce haptic percepts in computer interfaces. The operation of the force feedback device is substituted by tiny displacements on the cursor position relative to the intended force. This method exploits the domination of the visual over the haptic modality. Results show that people can recognize optically simulated bump and hole structures and that active cursor displacements influence the haptic perception of bumps and holes. Depending on the simulated strength of the force, optically simulated haptic feedback can take precedence over mechanically simulated haptic feedback and also the other way around. When optically simulated and mechanically simulated haptic feedback counteract each other, however, the weight attributed to each source of haptic information differs from user to user. It is concluded that active cursor displacements can be used to simulate the operation of mechanical force feedback devices.

[1]  Ravin Balakrishnan,et al.  "Beating" Fitts' law: virtual enhancements for pointing facilitation , 2004, Int. J. Hum. Comput. Stud..

[2]  Patrick Baudisch,et al.  Snap-and-go: helping users align objects without the modality of traditional snapping , 2005, CHI.

[3]  M. Heller,et al.  Intersensory conflict between vision and touch: The response modality dominates when precise, attention-riveting judgments are required , 1999, Perception & psychophysics.

[4]  Renaud Blanch,et al.  Semantic pointing: improving target acquisition with control-display ratio adaptation , 2004, CHI.

[5]  Frederick P. Brooks,et al.  Project GROPEHaptic displays for scientific visualization , 1990, SIGGRAPH.

[6]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[7]  Susan J. Lederman,et al.  Neurobiology: Feeling bumps and holes , 2001, Nature.

[8]  L. Marks The Unity of the Senses , 1978 .

[9]  Eric Horvitz,et al.  Principles of mixed-initiative user interfaces , 1999, CHI '99.

[10]  Douglas C. Engelbart,et al.  A research center for augmenting human intellect , 1968, AFIPS Fall Joint Computing Conference.

[11]  H. C. Warren De l'influence de la perception visuelle des corps sur leur poids apparent. , 1896 .

[12]  Laurent Étienne,et al.  Feeling bumps and holes without a haptic interface: the perception of pseudo-haptic textures , 2004, CHI.

[13]  Abderrahmane Kheddar,et al.  Pseudo-haptic feedback: can isometric input devices simulate force feedback? , 2000, Proceedings IEEE Virtual Reality 2000 (Cat. No.00CB37048).

[14]  F. L. Engel,et al.  Improved efficiency through I- and E-feedback: a trackball with contextual force feedback , 1994, Int. J. Hum. Comput. Stud..

[15]  Wolfgang Prinz,et al.  Modes of Linkage Between Perception and Action , 1984 .

[16]  Motoyuki Akamatsu,et al.  A multi-modal mouse with tactile and force feedback , 1994, Int. J. Hum. Comput. Stud..

[17]  Anatole Lécuyer,et al.  A study of the modification of the speed and size of the cursor for simulating pseudo-haptic bumps and holes , 2008, TAP.

[18]  I ROCK,et al.  Vision and Touch: An Experimentally Created Conflict between the Two Senses , 1964, Science.

[19]  D V Keyson,et al.  Dynamic cursor gain and tactual feedback in the capture of cursor movements. , 1997, Ergonomics.

[20]  Grigore C. Burdea,et al.  Force and Touch Feedback for Virtual Reality , 1996 .

[21]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[22]  Dv David Keyson Dynamic control gain and tactile feedback in the capture of cursor movements , 1994 .

[23]  Motoyuki Akamatsu,et al.  Multimodal Mouse: A Mouse-Type Device with Tactile and Force Display , 1994, Presence: Teleoperators & Virtual Environments.

[24]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[25]  B. J. Fogg,et al.  Persuasive computers: perspectives and research directions , 1998, CHI.

[26]  Koert van Mensvoort,et al.  What you see is what you feel: exploiting the dominance of the visual over the haptic domain to simulate force-feedback with cursor displacements , 2002, DIS '02.

[27]  Rupert England,et al.  Simulated and virtual realities: elements of perception , 1995 .

[28]  Won S. Kim,et al.  The phantom robot: predictive displays for teleoperation with time delay , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[29]  David Ahlström,et al.  Modeling and improving selection in cascading pull-down menus using Fitts' law, the steering law and force fields , 2005, CHI.

[30]  Ben Shneiderman,et al.  Direct manipulation: A step beyond programming languages (abstract only) , 1981, CHI '81.

[31]  Dik J. Hermes,et al.  Usability of optically simulated haptic feedback , 2008, Int. J. Hum. Comput. Stud..

[32]  Manfred Tscheligi,et al.  The FeelMouse: Making Computer Screens Feelable , 1994, ICCHP.

[33]  B. Stein,et al.  The Merging of the Senses , 1993 .

[34]  A. Charpentier Experimental study of some aspects of weight perception , 1891 .

[35]  Abderrahmane Kheddar,et al.  Can Isometric Input Devices Simulate Force Feedback , 2000 .

[36]  Douglas C. Engelbart,et al.  Display-Selection Techniques for Text Manipulation , 1967 .

[37]  Gerhard Leitner,et al.  An evaluation of sticky and force enhanced targets in multi target situations , 2006, NordiCHI '06.

[38]  Grigore C. Burdea,et al.  Virtual Force Feedback Lessons, Challenges, Future Applications , 1992, J. Robotics Mechatronics.

[39]  Krishna Bharat,et al.  Making computers easier for older adults to use: area cursors and sticky icons , 1997, CHI.

[40]  Ben Shneiderman,et al.  Direct Manipulation: A Step Beyond Programming Languages , 1983, Computer.

[41]  H E Ross,et al.  Charpentier (1891) on the size—weight illusion , 1999, Perception & psychophysics.

[42]  Gerhard Leitner,et al.  Improving Mouse Navigation - A Walk through the "Hilly Screen Landscape" , 2002, DSV-IS.

[43]  R. Klatzky,et al.  There's more to touch than meets the eye: The salience of object attributes for haptics with and without vision. , 1987 .

[44]  S. Lederman,et al.  Perception of texture by vision and touch: multidimensionality and intersensory integration. , 1986, Journal of experimental psychology. Human perception and performance.

[45]  Vincent Hayward,et al.  Force can overcome object geometry in the perception of shape through active touch , 2001, Nature.

[46]  D. W. Massaro,et al.  An Information-Processing Analysis of Perception and Action , 1990 .

[47]  Wolfgang Prinz,et al.  Experimental approaches to action , 2003 .

[48]  Sung H. Han,et al.  Evaluation of cursor capturing functions in a target positioning task , 2006 .

[49]  S. Runeson,et al.  Visual perception of lifted weight. , 1981, Journal of experimental psychology. Human perception and performance.