Cyanobacterial biofuel production.

[1]  George M. Church,et al.  A new dawn for industrial photosynthesis , 2011, Photosynthesis Research.

[2]  James C. Liao,et al.  Engineering Corynebacterium glutamicum for isobutanol production , 2010, Applied Microbiology and Biotechnology.

[3]  H. Lichtenthaler Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. , 2000, Biochemical Society transactions.

[4]  R. Haselkorn,et al.  Genetic engineering of the cyanobacterial chromosome. , 1987, Methods in enzymology.

[5]  I. Andersson,et al.  Structure and function of Rubisco. , 2008, Plant physiology and biochemistry : PPB.

[6]  James C Liao,et al.  Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde , 2009, Nature Biotechnology.

[7]  M. Seibert,et al.  Evidence for a dual function of the herbicide‐binding D1 protein in photosystem II , 1986 .

[8]  O. Koksharova,et al.  Genetic tools for cyanobacteria , 2001, Applied Microbiology and Biotechnology.

[9]  James C. Liao,et al.  Metabolic Engineering of Clostridium cellulolyticum for Production of Isobutanol from Cellulose , 2011, Applied and Environmental Microbiology.

[10]  Akihiko Kondo,et al.  Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae , 2012, Critical reviews in biotechnology.

[11]  Fuli Li,et al.  Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri , 2007, Journal of bacteriology.

[12]  E. Gantt,et al.  Isoprenoid Biosynthesis in Synechocystis sp. Strain PCC6803 Is Stimulated by Compounds of the Pentose Phosphate Cycle but Not by Pyruvate or Deoxyxylulose-5-Phosphate , 2002, Journal of bacteriology.

[13]  M. Inui,et al.  Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli , 2008, Applied Microbiology and Biotechnology.

[14]  V. Zverlov,et al.  Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis , 2010, Applied Microbiology and Biotechnology.

[15]  J. Cronan,et al.  Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. , 2009, Methods in enzymology.

[16]  Xuefeng Lu,et al.  Overproduction of free fatty acids in E. coli: implications for biodiesel production. , 2008, Metabolic engineering.

[17]  A. Schirmer,et al.  Microbial Biosynthesis of Alkanes , 2010, Science.

[18]  J. Liao,et al.  Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli , 2011, Applied and Environmental Microbiology.

[19]  Peter Lindblad,et al.  Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology , 2010, Nucleic acids research.

[20]  Anne M. Ruffing Engineered cyanobacteria: Teaching an old bug new tricks , 2011, Bioengineered bugs.

[21]  Steven S. McConnell,et al.  A Comparison of Ethanol and Butanol as Oxygenates Using a Direct-Injection, Spark-Ignition Engine , 2009 .

[22]  J. Brosius,et al.  Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity. , 1985, The Journal of biological chemistry.

[23]  P. Soucaille,et al.  Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824 , 2002, Journal of bacteriology.

[24]  J. Cronan,et al.  Defective Export of a Periplasmic Enzyme Disrupts Regulation of Fatty Acid Synthesis (*) , 1995, The Journal of Biological Chemistry.

[25]  T. Hase,et al.  Cyanobacterial Non-mevalonate Pathway , 2005, Journal of Biological Chemistry.

[26]  W. Pollock,et al.  Bacteria produce the volatile hydrocarbon isoprene , 1995, Current Microbiology.

[27]  T. Sharkey,et al.  Isoprene emission from plants: why and how. , 2007, Annals of botany.

[28]  J. Liao,et al.  High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal , 2011, Applied Microbiology and Biotechnology.

[29]  J. Liao,et al.  Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. , 2010, Journal of bioscience and bioengineering.

[30]  L. Ruzicka The isoprene rule and the biogenesis of terpenic compounds , 1953, Experientia.

[31]  F. Frerman,et al.  Molecular and catalytic properties of the acetoacetyl-coenzyme A thiolase of Escherichia coli. , 1976, Archives of biochemistry and biophysics.

[32]  J. Cronan,et al.  Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action , 1994, Journal of bacteriology.

[33]  Michelle C. Y. Chang,et al.  Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. , 2011, Nature chemical biology.

[34]  コーリ ニール ダッジ,et al.  Secretion of fatty acids by photosynthetic microorganisms , 2008 .

[35]  Xinyao Liu,et al.  Fatty acid production in genetically modified cyanobacteria , 2011, Proceedings of the National Academy of Sciences.

[36]  E. Gantt,et al.  Inactivation of sll1556 in Synechocystis Strain PCC 6803 Impairs Isoprenoid Biosynthesis from Pentose Phosphate Cycle Substrates In Vitro , 2004, Journal of bacteriology.

[37]  H. Eklund,et al.  Crystal structure of E.coli alcohol dehydrogenase YqhD: evidence of a covalently modified NADP coenzyme. , 2004, Journal of molecular biology.

[38]  G. Agrawal,et al.  An AU-box motif upstream of the SD sequence of light-dependent psbA transcripts confers mRNA instability in darkness in cyanobacteria. , 2001, Nucleic acids research.

[39]  J. Sheng,et al.  CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass , 2011, Proceedings of the National Academy of Sciences.

[40]  Kevin M. Smith,et al.  Metabolic engineering of Escherichia coli for 1-butanol production. , 2008, Metabolic engineering.

[41]  J. Benemann,et al.  Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-Out Report , 1998 .

[42]  E. Green Fermentative production of butanol--the industrial perspective. , 2011, Current opinion in biotechnology.

[43]  Peter Lindblad,et al.  Synthetic biology in cyanobacteria engineering and analyzing novel functions. , 2011, Methods in enzymology.

[44]  Alyssa M. Redding,et al.  Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol , 2008, Microbial cell factories.

[45]  C. Krebs,et al.  Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. , 2011, Journal of the American Chemical Society.

[46]  J. Liao,et al.  Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels , 2008, Nature.

[47]  L. Nielsen,et al.  Fermentative butanol production by clostridia , 2008, Biotechnology and bioengineering.

[48]  R. Lovitt,et al.  Placing microalgae on the biofuels priority list: a review of the technological challenges , 2010, Journal of The Royal Society Interface.

[49]  C. Krebs,et al.  Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase. , 2011, Journal of the American Chemical Society.

[50]  J. Kesselmeier,et al.  Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology , 1999 .

[51]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[52]  Rainer Kalscheuer,et al.  Microdiesel: Escherichia coli engineered for fuel production. , 2006, Microbiology.

[53]  K. Prather,et al.  Engineering alternative butanol production platforms in heterologous bacteria. , 2009, Metabolic engineering.

[54]  D. T. Jones,et al.  Acetone-butanol fermentation revisited. , 1986, Microbiological reviews.

[55]  Irina Borodina,et al.  Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism , 2011, Biotechnology for biofuels.

[56]  William F. Laurance,et al.  How Green Are Biofuels? , 2008, Science.

[57]  J. Sheehan,et al.  Engineering direct conversion of CO2 to biofuel , 2009, Nature Biotechnology.

[58]  James C Liao,et al.  Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. , 2011, Metabolic engineering.

[59]  F. Tabita,et al.  Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. , 1997, FEMS microbiology letters.

[60]  E. Papoutsakis,et al.  Thiolase from Clostridium acetobutylicum ATCC 824 and Its Role in the Synthesis of Acids and Solvents , 1988, Applied and environmental microbiology.

[61]  A. Melis,et al.  Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. , 2010, Metabolic engineering.

[62]  Katharine Sanderson,et al.  Lignocellulose: A chewy problem , 2011, Nature.