Aqueous solutions of transition metal containing micelles.

[1]  Weidong Jiang,et al.  Metallomicelle catalysis: Hydrolysis of p‐nitrophenyl picolinate induced by Schiff base Co(II) complexes in a Gemini surfactant micellar solution , 2007 .

[2]  L. Qiu,et al.  Gemini metallomicellar catalysis: Hydrolysis of p-nitrophenyl picolinate catalyzed by Cu(II) and Ni(II) complexes of macrocyclic ligands in gemini surfactant micelles , 2007 .

[3]  Jian‐zhang Li,et al.  Cleavage of phosphate diesters mediated by Zn(II) complex in Gemini surfactant micelles. , 2007, Journal of colloid and interface science.

[4]  P. Sadler,et al.  Metals in membranes. , 2007, Chemical Society reviews.

[5]  Changwei Hu,et al.  Hydrolysis of PNPP Catalyzed by Cu (II), Ni (II) Schiff Base Complexes in CTAB Micellar Solution , 2007 .

[6]  Changwei Hu,et al.  Hydrolysis of BNPP Catalyzed by the Crowned Schiff Base Co(II) Complex Containing Benzoaza‐15‐Crown‐5 in Micellar Solution , 2007 .

[7]  Xiaowei Shi,et al.  Study on the Phenolic Oxidation by H2O2 Using Metallomicelles Composed of Dinuclear Copper(II) Complex as Synthetic Peroxidases , 2007 .

[8]  A. Polyzos,et al.  Catalysis of aryl ester hydrolysis in the presence of metallomicelles containing a copper(II) diethylenetriamine derivative. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  Yourong Wang,et al.  Hydrolysis of phosphodiester catalyzed by analogous dinuclear Cu(II) complex in CTAB micellar solution , 2007 .

[10]  J. Du,et al.  Metallomicellar catalysis: hydrolysis of phosphate monoester and phosphodiester by Cu(II), Zn(II) complexes of pyridyl ligands in CTAB micellar solution. , 2006, Journal of colloid and interface science.

[11]  P. Griffiths,et al.  Metallosurfactants: interfaces and micelles. , 2006, Advances in colloid and interface science.

[12]  P. Heiney,et al.  Thermotropic mesomorphism of soft materials bearing carboxylate-supported mu4-oxo tetracupric clusters. , 2006, Inorganic chemistry.

[13]  Jian‐zhang Li,et al.  Studies on BNPP Cleavage by Schiff Base Complexes Containing Benzoaza‐15‐Crown‐5 in DHAB Micellar Solution , 2006 .

[14]  X. Bin,et al.  Oxidation Reaction of Phenol with H2O2 Catalyzed by Metallomicelles Made of Co(II) and Cu(II) Complexes of Imidazole Groups and Micelle as Mimic Peroxidase , 2006 .

[15]  F. Menger,et al.  Exposure of self-assembly interiors to external elements. A kinetic approach. , 2006, Journal of the American Chemical Society.

[16]  L. Jun,et al.  Mechanism of Intramolecular Nucleophilic Substitution in the Catalytic Hydrolysis of Bis(4-Nitrophenyl) Phosphate Ester in a Metallomicelle , 2006 .

[17]  C. J. Elsevier,et al.  Ru(II)-based metallosurfactant forming inverted aggregates. , 2006, Nano letters.

[18]  H. Yan,et al.  Mechanism and Kinetics of Hydrolysis of Carboxylic Esters Catalysed by Metallomicelles Comprising a Macrocyclic Metal Complex and a Surfactant , 2006 .

[19]  K. Binnemans Ionic liquid crystals. , 2005, Chemical reviews.

[20]  Chen Yong,et al.  Hydrolysis of Bis(4‐Nitrophenyl) Phosphate Catalyzed by Metallomicelle Made Up of the Crowned Schiff Base Complex as Synthetic Hydrolase , 2005 .

[21]  H. Zhong,et al.  Metallomicellar Catalytic Hydrolysis of NPP by CuIINiII Heterodinuclear Complexes Containing Diamine Groups in Brij35 Micellar Solution , 2005 .

[22]  A. A. Hafiz Metallosurfactants of Cu(II) and Fe(III) complexes as catalysts for the destruction of paraoxon , 2005 .

[23]  R. Heenan,et al.  Surface and aggregation behavior of aqueous solutions of Ru(II) metallosurfactants: 4. Effect of chain number and orientation on the aggregation of [Ru(bipy)2(bipy')]Cl2 complexes. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[24]  D. Bruce,et al.  Surface and aggregation behavior of aqueous solutions of Ru(II) metallosurfactants. 3. Effect of chain number and orientation on the structure of adsorbed films of [Ru(bipy)2(bipy')]Cl2 complexes. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[25]  F. Menger An alternative view of enzyme catalysis , 2005 .

[26]  Changwei Hu,et al.  Mimic models of peroxidase--kinetic studies of the catalytic oxidation of hydroquinone by H2O2. , 2004, Journal of inorganic biochemistry.

[27]  M. Inoue,et al.  Formation of Thermotropic and Lyotropic Liquid Crystals of Bis(N‐alkylethylenediamine)silver(I) Nitrate , 2004 .

[28]  A. Laplace,et al.  Macrocyclic sugar-based surfactants: block molecules combining self-aggregation and complexation properties. , 2004, Angewandte Chemie.

[29]  J. Lehn,et al.  Selective complexation and transport of europium ions at the interface of vesicles. , 2004, Chemistry.

[30]  G. Williams,et al.  The structure of metallomicelles. , 2004, Chemistry.

[31]  Changwei Hu,et al.  Metallomicelles made of dinuclear copper(II) complexes of oxamido-bridge as symmetric two-center catalysts of the cleavage of carboxylic acid esters , 2004 .

[32]  J. Du,et al.  Catalytic hydrolysis of carboxylic acid esters by Cu(II) and Zn(II) complexes containing a tetracoordinate macrocyclic Schiff base ligand in Brij35 micellar solution , 2004 .

[33]  Changwei Hu,et al.  Studies on the reaction kinetics and the mechanism of hydrolysis of bis(4-nitrophenyl) phosphate (BNPP) catalyzed by oxamido-bridged dinuclear copper(II) complexes in micellar solution , 2003 .

[34]  C. Behm,et al.  Surface-active cobalt cage complexes: synthesis, surface chemistry, biological activity, and redox properties , 2003 .

[35]  A. A. Hafiz,et al.  Catalytic destruction of malathion by metallomicelle layers , 2003 .

[36]  S. Bhattacharya,et al.  Synthesis of new Cu(II)-chelating ligand amphiphiles and their esterolytic properties in cationic micelles. , 2003, The Journal of organic chemistry.

[37]  J. Klaveness,et al.  Preparation and in vitro evaluation of a novel amphiphilic GdPCTA-[12] derivative; a micellar MRI contrast agent. , 2003, Organic & biomolecular chemistry.

[38]  S. Mallik,et al.  Synthesis of new, pyrene-containing, metal-chelating lipids and sensing of cupric ions. , 2003, Organic letters.

[39]  R. Heenan,et al.  Surface and aggregation behavior of aqueous solutions of Ru(II) metallosurfactants: 1. Micellization of [Ru(bipy)2(bipy')][Cl]2 complexes , 2003 .

[40]  D. Bruce,et al.  Surface and Aggregation Behavior of Aqueous Solutions of Ru(II) Metallosurfactants: 2. Adsorbed Films of [Ru(bipy)2(bipy‘)][Cl]2 Complexes , 2003 .

[41]  Jiang Bing-ying,et al.  Enhanced Hydrolysis of Carboxylic Acid Esters Catalyzed by Metallomicelles Made of Cu(II) and Zn(II) Complexes , 2002 .

[42]  R. Moss,et al.  Stereochemical study of phosphonothioate cleavage by a metallomicelle. , 2002, Organic letters.

[43]  C. López-Iglesias,et al.  Synthesis and characterization of new amphiphilic phosphines and palladium metallosurfactants , 2002 .

[44]  Fredric M. Menger,et al.  Supramolecular chemistry and self-assembly , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Xiang Yan,et al.  Metallomicellar catalysis: catalytic cleavage of p-nitrophenyl picolinate by Cu2+ complex of 4-chloride-2,6-bis(N-hydroxyethylaminomethyl)-benzophenol in micellar solution. , 2002, Journal of colloid and interface science.

[46]  X. Li,et al.  The Gd(3+) complex of a fatty acid analogue of DOTP binds to multiple albumin sites with variable water relaxivities. , 2001, Inorganic chemistry.

[47]  X. Li,et al.  Synthesis and NMR studies of new DOTP-like lanthanide(III) complexes containing a hydrophobic substituent on one phosphonate side arm. , 2001, Inorganic chemistry.

[48]  Jiaqing Xie,et al.  Metallomicellar Catalysis. Catalytic Hydrolysis of p-Nitrophenyl Picolinate by bis-{N-(2-Deoxy-β-D-glucopyranosyl-2-[3-carboxyl-salicylaldimino])} M2 (II) (M = Cu, Zn, Co) in CTAB Micellar Solution , 2001 .

[49]  M. Kant,et al.  Water-soluble rhodium/phosphonate–phosphine catalysts for hydroformylation , 2001 .

[50]  J. Engberts,et al.  Efficient catalysis of a Diels-Alder reaction by metallo-vesicles in aqueous solution. , 2001, Organic letters.

[51]  Xiang Yan,et al.  Metallomicellar Catalysis Cleavage of p-Nitrophenyl Picolinate Catalyzed by Binuclear Metal Complexes Coordinating Tripeptide in CTAB Micellar Solution. , 2001, Journal of colloid and interface science.

[52]  E. Pereira,et al.  A novel self-indicative vesicle based on a iron(II) complex , 2001 .

[53]  F. Mancin,et al.  Ester Cleavage Catalysis in Reversed Micelles by Cu(II) Complexes of Hydroxy-Functionalized Ligands , 2000 .

[54]  D. Jaeger,et al.  Reactions of a Vesicular Functionalized Surfactant with Alkyl 2-Chloroethyl Sulfides (Mustard Simulants) , 2000 .

[55]  D. Knight,et al.  A Synthetic Route to a New Surface-Active Phosphine Ligand: 12-DPDP (12-Diphenylphosphinododecylphosphonate) , 2000 .

[56]  H. Morales‐Rojas,et al.  Kinetics of Cleavage of Thiophosphates and Phosphonothioates by Micellar Iodosocarboxylates and Copper Metallomicelles , 2000 .

[57]  Xiancheng,et al.  Metallomicellar Catalysis Hydrolysis of p-Nitrophenyl Picolinate Catalyzed by Copper(II), Nickel(II), and Zinc(II) Complexes of Long Alkyl Pyridine Ligands in Micellar Solution. , 2000, Journal of colloid and interface science.

[58]  J. Reek,et al.  Accelerated Biphasic Hydroformylation by Vesicle Formation of Amphiphilic Diphosphines , 2000 .

[59]  F. Mancin,et al.  Metallomicelles Made of Ni(II) and Zn(II) Complexes of 2-Pyridinealdoxime-Based Ligands as Catalyst of the Cleavage of Carboxylic Acid Esters† , 2000 .

[60]  Chen Siqing,et al.  CATALASE MIMIC WITH Fe (II) METALLOMICELLE , 2000 .

[61]  Chen Siqing,et al.  CATALYTIC HYDROLYSIS OF P-NITROPHENYL PICOLNATE BY BIOXOCYLAM ZINC(II) COMPLEXES IN MICELLAR SOLUTION , 2000 .

[62]  M. Schröder,et al.  The synthesis and properties of surfactant aza macrocycles , 2000 .

[63]  R. Mathieu,et al.  Synthesis of New Hemilabile Amphiphilic Phosphines. Complexing Properties toward Ruthenium(II) and Catalytic Activity for Hydrogenation of Prenal , 1999 .

[64]  M. Shimomura,et al.  Monolayer and Fluorescence Properties of a Chiral Amphiphilic Ruthenium(II) Complex at an Air−Water Interface , 1999 .

[65]  M. C. Feiters,et al.  Copper(II) complexes of a dicephalic imidazole surfactant. Tunable organization of metalloaggregates , 1999 .

[66]  Tian Anmin,et al.  Metallomicellar Catalysis. Cleavage of p-Nitrophenyl Picolinate in Copper(II) Coordinating N-Myristoyl-N-(β-hydroxyethyl)ethylenediamine in CTAB Micelles , 1999 .

[67]  C. A. Bunton,et al.  Nucleophilic catalysis of hydrolyses of phosphate and carboxylate esters by metallomicelles: Facts and misconceptions , 1998 .

[68]  N. Govan,et al.  A metallomicelle catalysed hydrolysis of a phosphate triester, a phosphonate diester and O-isopropyl methylfluorophosphonate (Sarin) , 1998 .

[69]  G. Ghirlanda,et al.  Amphiphilic copper(II) complexes modeled after the metal-complexation subunit of bleomycin antibiotics , 1998 .

[70]  F. Mancin,et al.  Kinetic Amplification of the Enantioselective Cleavage of α-Amino Acid Esters by Metallomicelles , 1998 .

[71]  S. Bhattacharya,et al.  Synthesis of Some Copper(II)-Chelating (Dialkylamino)pyridine Amphiphiles and Evaluation of Their Esterolytic Capacities in Cationic Micellar Media. , 1998, The Journal of organic chemistry.

[72]  Lise Arleth,et al.  Small-angle scattering study of TAC8: A surfactant with cation complexing potential , 1997 .

[73]  Y. Lim,et al.  Effects of copper(II) mixed micelles on autooxidation of 3,5-di-tert-butylcatechol and hydrolysis of p-nitrophenyl diphenyl phosphate , 1997 .

[74]  T. J. Broxton,et al.  Micellar catalysis of organic reactions. Part 37. A comparison of the catalysis of ester and amide hydrolysis by copper-containing micelles , 1997 .

[75]  F. Mancin,et al.  Chiral lipophilic ligands. 5. Enantioselective ester cleavage of α-amino esters by Cu(II) complexes of chiral diamino alcohols in aqueous sufactants solutions , 1997 .

[76]  J. Bakos,et al.  A new route for the synthesis of amphiphilic and water-soluble ligands: mono- and di-tertiary phosphines having an alkylene sulfate chain , 1997 .

[77]  T. Koike,et al.  HYDROLYSIS OF LIPOPHILIC ESTERS CATALYZED BY A ZINC(II) COMPLEX OF A LONG ALKYL-PENDANT MACROCYCLIC TETRAAMINE IN MICELLAR SOLUTION , 1996 .

[78]  G. Gokel,et al.  Synthetic Organic Chemical Models for Transmembrane Channels , 1996 .

[79]  A. Kaifer,et al.  Self-assembled monolayers of Cu(II) metallosurfactants on GC and HOPG , 1996 .

[80]  G. Gokel,et al.  Organometallic Amphiphiles: Oxidized Ferrocene as Headgroup for Redox-Switched Bilayer and Monolayer Membranes , 1996 .

[81]  G. Thatcher,et al.  Inhibition of phosphatidylinositol‐specific phospholipase C: Studies on synthetic substrates, inhibitors and a synthetic enzyme , 1996, Journal of molecular recognition : JMR.

[82]  P. Scrimin,et al.  Micellar nickel(II)-2-pyridineketoxime complexes as powerful catalysts of the cleavage of carboxylic acid esters in weakly acidic conditions , 1996 .

[83]  P. K. Bharadwaj,et al.  Cryptand-based metal-free or complexed amphiphiles which readily form vesicles , 1996 .

[84]  G. Thatcher,et al.  A metallomicelle enzyme model for phospholipase C catalysis and inhibition , 1996 .

[85]  J. Bakos,et al.  Preparation of a Surface‐Active Chiral Diphosphane and Its Use in the Hydrogenation of Prochiral Olefins , 1995 .

[86]  J. Holbrey,et al.  Amphiphilic terpyridine complexes of ruthenium and rhodium displaying lyotropic mesomorphism , 1995 .

[87]  King C.P. Li,et al.  Paramagnetic Polymerized Liposomes: Synthesis, Characterization, and Applications for Magnetic Resonance Imaging , 1995 .

[88]  P. Scrimin,et al.  Chiral Lipophilic Ligands. 1. Enantioselective Cleavage of .alpha.-Amino Acid Esters in Metallomicellar Aggregates , 1994 .

[89]  P. Scrimin,et al.  Leaving group effect in the cleavage of picolinate esters catalyzed by hydroxy-functionalized metallomicelles , 1994 .

[90]  G. Gokel,et al.  Redox-switched vesicle formation from two novel, structurally distinct metalloamphiphiles , 1993 .

[91]  J. Engbersen,et al.  Catalytic hydrolysis of phosphate esters by metallocomplexes of 1,10‐phenanthroline derivatives in micellar solution , 1993 .

[92]  J. Engbersen,et al.  Synthesis of chiral 1,10-phenanthroline ligands and the activity of metal-ion complexes in the enantioselective hydrolysis of N-protected amino acid esters , 1992 .

[93]  B. Fell,et al.  Rhodiumkatalysierte mizellare Zweiphasenhydroformylierung von n-Tetradecen-1 mit grenzflächenaktiven Sulfobetainderivaten des Tris(2-pyridyl)phosphans als wasserlösliche Komplexliganden , 1991 .

[94]  G. Gokel,et al.  Redox-switched molecular aggregates: the first example of vesicle formation from hydrophobic ferrocene derivatives , 1991 .

[95]  P. Scrimin,et al.  Metallomicelles as catalysts of the hydrolysis of carboxylic and phosphoric acid esters , 1991 .

[96]  K. Ogino,et al.  Hydrolytic metalloenzyme models. Micellar effects on the activation of the hydroxyl groups of N-alkyl-2-(hydroxymethyl)-imidazole ligands by Cu2+ in the transacylation of p-nitrophenyl picolinate. , 1991 .

[97]  K. Ogino,et al.  Rate enhancing multi-site interactions in ester hydrolysis catalyzed by Cu2+ complexes of surfactant imidazole ligands in non-ionic micelles , 1990 .

[98]  L. Gan,et al.  Phosphate ester hydrolysis catalyzed by metallomicelles , 1987 .

[99]  S. Gellman,et al.  Catalytic hydrolysis of a phosphate triester by tetracoordinated zinc complexes. , 1986, Journal of the American Chemical Society.

[100]  K. Hoshino,et al.  Reversible formation and disruption of micelles by control of the redox state of the surfactant tail group , 1985 .

[101]  M. Graetzel,et al.  Light-induced charge injection in functional crown ether vesicles , 1980 .

[102]  J. Simon,et al.  A new type of surfactants. The annelides. Characterization of organized metal ion assemblies obtained by cationic complexation at the micelle subsurface , 1980 .

[103]  M. J. Rosen Surfactants and Interfacial Phenomena , 1978 .

[104]  F. Montanari,et al.  Alkyl substituted aza-macrobicyclic polyethers: highly efficient catalysts in two-phase reactions , 1975 .

[105]  R. F. Williams,et al.  CATALYSIS IN WATER POOLS. , 1973 .

[106]  F. Menger Reactivity of organic molecules at phase boundaries , 1972 .