The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin.

The total genomic copy numbers of ten families of transposable elements of Drosophila melanogaster in a set of ten isogenic lines derived from a natural population were estimated by slot-blotting. The numbers of euchromatic copies of members of each family were determined for each line by in situ hybridization of element probes to polytene chromosomes. Heterochromatic numbers were estimated by subtraction of the euchromatic counts from the total numbers. There was considerable variation between element families and lines in heterochromatic abundances, and the variance between lines for many elements was much greater for the heterochromatin than for the euchromatin. The data are consistent with the view that much of the beta-heterochromatin consists of sequences derived from transposable elements. They are also consistent with the hypothesis that similar evolutionary forces control element abundances in both the euchromatin and heterochromatin, although amplification of inert sequences derived from transposable elements may be in part responsible for their accumulation in heterochromatin.

[1]  W. Engels P elements in Drosophila. , 1996, Current topics in microbiology and immunology.

[2]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[3]  B. Charlesworth,et al.  Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. , 1994, Genetics.

[4]  K. Hughes,et al.  Effects of autosomal inversions on meiotic exchange in distal and proximal regions of the X chromosome in a natural population of Drosophila melanogaster. , 1994, Genetical research.

[5]  R. Levis,et al.  Transposons in place of telomeric repeats at a Drosophila telomere , 1993, Cell.

[6]  A. Hilliker,et al.  Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. , 1993, Genetics.

[7]  D. Anxolabéhère,et al.  Distribution and conservation of sequences homologous to the 1731 retrotransposon in Drosophila. , 1993, Molecular biology and evolution.

[8]  W Stephan,et al.  The advance of Muller's ratchet in a haploid asexual population: approximate solutions based on diffusion theory. , 1993, Genetical research.

[9]  M. Pardue,et al.  The Y chromosome of Drosophila melanogaster contains a distinctive subclass of Het-A-related repeats. , 1993, Genetics.

[10]  C. Caggese,et al.  Bari-1, a new transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. , 1993, Genetics.

[11]  B. Charlesworth,et al.  The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II. Inferences on the nature of selection against elements. , 1992, Genetical research.

[12]  B. Charlesworth,et al.  The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution. , 1992, Genetical research.

[13]  M. Steinemann,et al.  Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Lindsley,et al.  The Genome of Drosophila Melanogaster , 1992 .

[15]  K. Ray,et al.  A BamHI repeat element is predominantly associated with the degenerating neo-Y chromosome of Drosophila miranda but absent in the Drosophila melanogaster genome. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[16]  B. Charlesworth,et al.  Accumulation of P elements in minority inversions in natural populations of Drosophila melanogaster. , 1992, Genetical research.

[17]  C. Langley,et al.  Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. , 1991, Genetics.

[18]  A. Clark,et al.  Evolution of ribosomal RNA gene copy number on the sex chromosomes of Drosophila melanogaster. , 1991, Molecular biology and evolution.

[19]  B. Charlesworth,et al.  Transposable elements in natural populations with a mixture of selected and neutral insertion sites. , 1991, Genetical research.

[20]  M. Pardue,et al.  HeT DNA: a family of mosaic repeated sequences specific for heterochromatin in Drosophila melanogaster. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Davies,et al.  Molecular and cytogenetic analysis of the heterochromatin-euchromatin junction region of the Drosophila melanogaster X chromosome using cloned DNA sequences. , 1990, Genetics.

[22]  R. Devlin,et al.  The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. , 1990, Genetics.

[23]  G. L. Miklos,et al.  Chromosome structure at interfaces between major chromatin types: Alpha‐ and Beta‐heterochromatin , 1990, BioEssays : news and reviews in molecular, cellular and developmental biology.

[24]  Michael Ashburner,et al.  Drosophila: A laboratory handbook , 1990 .

[25]  B. Charlesworth,et al.  A study of ten families of transposable elements on X chromosomes from a population of Drosophila melanogaster. , 1989, Genetical research.

[26]  Michael Ashburner,et al.  A Laboratory handbook , 1989 .

[27]  B. Charlesworth,et al.  The population genetics of Drosophila transposable elements. , 1989, Annual review of genetics.

[28]  M. Ashburner A Laboratory manual , 1989 .

[29]  J. Davies,et al.  Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin of Drosophila melanogaster. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Brutlag,et al.  Adjacent satellite DNA segments in Drosophila structure of junctions. , 1987, Journal of molecular biology.

[31]  B. Charlesworth,et al.  A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. , 1987, Genetical research.

[32]  D. Brutlag,et al.  Multiplicity of satellite DNA sequences in Drosophila melanogaster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Bownes,et al.  Drosophila: A practical approach: edited by D. B. Roberts IRL Press, 1986. £26.00/$47.00 (xix + 295 pages) ISBN 0 94746 66 7 , 1987 .

[34]  Finnegan Dj,et al.  Transposable elements in Drosophila melanogaster. , 1986 .

[35]  S. Bonaccorsi,et al.  The peculiar genetic organization of Drosophila heterochromatin , 1986 .

[36]  B. Charlesworth,et al.  Genetic variation in recombination in Drosophila. I. Responses to selection and preliminary genetic analysis , 1985, Heredity.

[37]  G. L. Miklos,et al.  Localized Highly Repetitive DNA Sequences in Vertebrate and Invertebrate Genomes , 1985 .

[38]  R. Macintyre Molecular evolutionary genetics , 1985 .

[39]  P. Szauter,et al.  An analysis of regional constraints on exchange in Drosophila melanogaster using recombination-defective meiotic mutants. , 1984, Genetics.

[40]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[41]  I. Dawid,et al.  Interdigitated arrangement of two oligo(A)-terminated DNA sequences in Drosophila. , 1983, Nucleic acids research.

[42]  T. Tlsty,et al.  Enhancement of methotrexate resistance and dihydrofolate reductase gene amplification by treatment of mouse 3T6 cells with hydroxyurea , 1983, Molecular and cellular biology.

[43]  D. Finnegan,et al.  Transposable elements in Drosophila melanogaster. , 1982, Oxford surveys on eukaryotic genes.

[44]  D. Glover,et al.  Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster , 1981, Nature.

[45]  A. Hilliker,et al.  The genetic analysis of D. melanogaster heterochromatin , 1980, Cell.

[46]  G. Rubin,et al.  Insertion of the drosophila transposable element copia generates a 5 base pair duplication , 1980, Cell.

[47]  S. Kidd,et al.  A DNA segment from D. melanogaster which contains five tandemly repeating units homologous to the major rDNA insertion , 1980, Cell.

[48]  M. W. Young,et al.  Middle repetitive DNA: a fluid component of the Drosophila genome. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G. Rubin,et al.  Polymorphisms in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in drosophila , 1979, Cell.

[50]  G. Rubin,et al.  Transposition of elements of the 412, copia and 297 dispersed repeated gene families in drosophila , 1979, Cell.

[51]  D. Brutlag,et al.  One of the copia genes is adjacent to satellite DNA in Drosophila melanogaster , 1978, Cell.

[52]  J. Haigh The accumulation of deleterious genes in a population--Muller's Ratchet. , 1978, Theoretical population biology.

[53]  H. L. Carson,et al.  The Genetics and Biology of Drosophila , 1976, Heredity.

[54]  S. C. Lakhotia,et al.  EM autoradiographic studies on polytene nuclei of Drosophila melanogaster: II. Organization and transcriptive activity of the chromocentre , 1974 .

[55]  M. Eto,et al.  Preparation of nucleic acids from silkworms , 1954 .

[56]  P. Hoel,et al.  Introduction to Mathematical Statistics. , 1947 .

[57]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.