Statistical mechanics of Eigen's evolution model

The correspondence between Eigen's model of macromolecular evolution and the equilibrium statistical mechanics of an inhomogeneous Ising system is developed. The free energy landscape of random Ising systems with the Hopfield Hamiltonian as a special example is applied to the replication rate coefficient landscape. The coupling constants are scaled with 1/l, since the maxima of any landscape must not increase with the length of the macromolecules. The calculated error threshold relation then agrees with Eigen's expression, which was derived in a different way. It gives an explicit expression for the superiority parameter in terms of the parameters of the landscape. The dynamics of selection and evolution is discussed.

[1]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[2]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[3]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[4]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. W. Anderson,et al.  Suggested model for prebiotic evolution: the use of chaos. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. A. Baker ISING MODEL WITH A LONG-RANGE INTERACTION IN THE PRESENCE OF RESIDUAL SHORT- RANGE INTERACTIONS , 1963 .

[7]  W. Kinzel Phase transitions of cellular automata , 1985 .

[8]  Sompolinsky,et al.  Spin-glass models of neural networks. , 1985, Physical review. A, General physics.

[9]  Richard H. Enns,et al.  On the theory of selection of coupled macromolecular systems , 1976 .

[10]  Sompolinsky,et al.  Storing infinite numbers of patterns in a spin-glass model of neural networks. , 1985, Physical review letters.

[11]  Werner Ebeling,et al.  Diffusion and reaction in random media and models of evolution processes , 1984 .

[12]  S. Kirkpatrick,et al.  Infinite-ranged models of spin-glasses , 1978 .

[13]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[14]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[15]  I. Leuthäusser,et al.  An exact correspondence between Eigen’s evolution model and a two‐dimensional Ising system , 1986 .

[16]  H. Fukuyama,et al.  Surface Magnetism of f.c.c. Heisenberg Ferromagnets. I. Temperature and Spatial Dependences of Magnetization , 1976 .

[17]  Eytan Domany,et al.  Equivalence of Cellular Automata to Ising Models and Directed Percolation , 1984 .