Quantum oscillations in diamond field-effect transistors with a h -BN gate dielectric

Diamond has attracted attention as a next-generation semiconductor because of its various exceptional properties such as a wide bandgap and high breakdown electric field. Diamond field effect transistors, for example, have been extensively investigated for high-power and high-frequency electronic applications. The quality of their charge transport (i.e., mobility), however, has been limited due to charged impurities near the diamond surface. Here, we fabricate diamond field effect transistors by using a monocrystalline hexagonal boron nitride as a gate dielectric. The resulting high mobility of charge carriers allows us to observe quantum oscillations in both the longitudinal and Hall resistivities. The oscillations provide important information on the fundamental properties of the charge carriers, such as effective mass, lifetime, and dimensionality. Our results indicate the presence of a high-quality two-dimensional hole gas at the diamond surface and thus pave the way for studies of quantum transport in diamond and the development of low-loss and high-speed devices.

[1]  Jing-wen Zhang,et al.  Hydrogen-terminated diamond field-effect transistor with AlOx dielectric layer formed by autoxidation , 2019, Scientific Reports.

[2]  L. Ley,et al.  g -factor and well-width fluctuations as a function of carrier density in the two-dimensional hole accumulation layer of transfer-doped diamond , 2019, Physical Review B.

[3]  Kenji Watanabe,et al.  High-mobility diamond field effect transistor with a monocrystalline h-BN gate dielectric , 2018, APL Materials.

[4]  H. Kawarada,et al.  Ionic-liquid-gating setup for stable measurements and reduced electronic inhomogeneity at low temperatures. , 2018, The Review of scientific instruments.

[5]  Jared M. Johnson,et al.  Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures , 2018 .

[6]  K. Sano,et al.  Role of surface-bound hole states in electric-field-driven superconductivity at the (110)-surface of diamond , 2017 .

[7]  Tsubasa Matsumoto,et al.  B-doped diamond field-effect transistor with ferroelectric vinylidene fluoride–trifluoroethylene gate insulator , 2017 .

[8]  N. Rouger,et al.  Deep-Depletion Mode Boron-Doped Monocrystalline Diamond Metal Oxide Semiconductor Field Effect Transistor , 2017, IEEE Electron Device Letters.

[9]  Meiyong Liao,et al.  Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator , 2017 .

[10]  Yue Hao,et al.  Diamond Field Effect Transistors With MoO3 Gate Dielectric , 2017, IEEE Electron Device Letters.

[11]  M. Kasu Diamond field-effect transistors for RF power electronics: Novel NO2 hole doping and low-temperature deposited Al2O3 passivation , 2016 .

[12]  S. Yamasaki,et al.  Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics , 2016, Scientific Reports.

[13]  T. Ohshima,et al.  Homoepitaxial diamond film growth: High purity, high crystalline quality, isotopic enrichment, and single color center formation , 2015 .

[14]  Takashi Taniguchi,et al.  Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. , 2015, Nature nanotechnology.

[15]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[16]  David A. J. Moran,et al.  RF Operation of Hydrogen-Terminated Diamond Field Effect Transistors: A Comparative Study , 2015, IEEE Transactions on Electron Devices.

[17]  J. D. del Alamo,et al.  A Diamond:H/MoO3 MOSFET , 2014, IEEE Electron Device Letters.

[18]  Hiroshi Kawarada,et al.  C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation , 2014 .

[19]  H. Kawarada,et al.  Quantum oscillations of the two-dimensional hole gas at atomically flat diamond surfaces , 2014 .

[20]  Y. Gulyaev,et al.  FET on hydrogenated diamond surface , 2014 .

[21]  M. Kawasaki,et al.  Challenges and opportunities of ZnO-related single crystalline heterostructures , 2013, 1311.5088.

[22]  I. Akimoto,et al.  Direct measurement via cyclotron resonance of the carrier effective masses in pristine diamond , 2013 .

[23]  H. Kawarada,et al.  Low-Temperature Transport Properties of Holes Introduced by Ionic Liquid Gating in Hydrogen-Terminated Diamond Surfaces , 2013 .

[24]  M. Weinert,et al.  Electric-field-driven hole carriers and superconductivity in diamond , 2013 .

[25]  A. Morpurgo,et al.  Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. , 2010, Physical review letters.

[26]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[27]  J. Moussa,et al.  Constraints on Tc for superconductivity in heavily boron-doped diamond , 2008 .

[28]  Masashi Kawasaki,et al.  Quantum Hall Effect in Polar Oxide Heterostructures , 2007, Science.

[29]  H. Fukuyama,et al.  Theoretical Study on Superconductivity in Boron-Doped Diamond(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2006, cond-mat/0610337.

[30]  R. Jones,et al.  Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces , 2006 .

[31]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[32]  R. Winkler Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .

[33]  M. Sarachik,et al.  Metal–insulator transition in two-dimensional electron systems , 2003, cond-mat/0309140.

[34]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.

[35]  A. Saidane The Physics of Low-dimensional Semiconductors: An Introduction; J.H. Davies, Cambridge University Press, UK, ISBN 0-521-48491-X, $44.95 , 2000 .

[36]  J. H. Davies,et al.  The physics of low-dimensional semiconductors , 1997 .

[37]  S. Knysh,et al.  Superconductivity in a two-dimensional electron gas , 1997, Nature.

[38]  M. Cardona,et al.  Linear muffin-tin-orbital and k.p calculations of effective masses and band structure of semiconducting diamond , 1994 .

[39]  M. Asif Khan,et al.  Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN‐AlxGa1−xN heterojunctions , 1992 .

[40]  Fletcher,et al.  Low-field transport coefficients in GaAs/Ga1-xAlxAs heterostructures. , 1989, Physical review. B, Condensed matter.

[41]  A. Isihara,et al.  Density and magnetic field dependences of the conductivity of two-dimensional electron systems , 1986 .

[42]  Stern,et al.  Single-particle relaxation time versus scattering time in an impure electron gas. , 1985, Physical review. B, Condensed matter.

[43]  D. Shoenberg,et al.  Magnetic Oscillations in Metals , 1984 .

[44]  W. Tsang,et al.  Two‐dimensional hole gas at a semiconductor heterojunction interface , 1980 .

[45]  F. Koch,et al.  Space-charge layers on Ge surfaces. I. dc conductivity and Shubnikov—de Haas effect , 1979 .

[46]  G. Dorda,et al.  Comments on the hole mass in silicon inversion layers , 1976 .

[47]  Y. Uemura,et al.  Hartree Approximation for the Electronic Structure of a p-Channel Inversion Layer of Silicon M.O.S. (Selected Topics in Semiconductor Physics ) -- (Surface) , 1975 .

[48]  G. Dorda,et al.  Shubnikov-de Haas oscillations in p-type inversion layers on n-type silicon , 1974 .

[49]  Alan B. Fowler,et al.  Magneto-Oscillatory Conductance in Silicon Surfaces , 1966 .

[50]  S. Bhagavantam,et al.  Dielectric Constant of Diamond , 1948, Nature.

[51]  R. Balmer,et al.  Diamond as an electronic material , 2008 .

[52]  H. Jenniches Basic Semiconductor Physics , 2001 .