Harnack Principle for Weakly Coupled Elliptic Systems
暂无分享,去创建一个
[1] Mark Freidlin,et al. On the dirichlet problem for a class of second order pde systems with small parameter , 1990 .
[2] Zhongxin Zhao. Green Functions and Conditioned Gauge Theorem for a 2-Dimensional Domain , 1988 .
[3] Y. Kifer. Principal eigenvalues and equilibrium states corresponding to weakly coupled parabolic systems of PDE , 1992 .
[4] A. M. Hinz,et al. Subsoluton estimates and Harnack's inequality for Schrödinger operators. , 1990 .
[5] Zhen-Qing Chen,et al. Switched diffusion processes and systems of elliptic equations: a Dirichlet space approach , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[6] Mark Freidlin,et al. Averaging principle for perturbed random evolution equations and corresponding Dirichlet problems , 1993 .
[7] A. Ancona. Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien , 1978 .
[8] B. Simon,et al. Brownian motion and harnack inequality for Schrödinger operators , 1982 .
[9] J. Serrin. On the Harnack inequality for linear elliptic equations , 1954 .
[10] Guido Sweers,et al. Strong positivity in $$C(\bar \Omega )$$ for elliptic systemsfor elliptic systems , 1992 .
[11] Zhen-Qing Chen,et al. Potential theory for elliptic systems , 1996 .
[12] M. Sieveking,et al. Uniform bounds for quotients of Green functions on $C^{1,1}$-domains , 1982 .
[13] Zhong-Hua Zhao. Conditional gauge with unbounded potential , 1983 .
[14] H. Weinberger,et al. Maximum principles in differential equations , 1967 .
[15] C. Simader. An elementary proof of Harnack’s inequality for Schrödinger operators and related topics , 1990 .
[16] E. Fabes,et al. Harnack’s inequality for Schrödinger operators and the continuity of solutions , 1986 .