Attributed Graph Kernels Using the Jensen-Tsallis q-Differences

We propose a family of attributed graph kernels based on mutual information measures, i.e., the Jensen-Tsallis (JT) q-differences (for q ∈ [1,2]) between probability distributions over the graphs. To this end, we first assign a probability to each vertex of the graph through a continuous-time quantum walk (CTQW). We then adopt the tree-index approach [1] to strengthen the original vertex labels, and we show how the CTQW can induce a probability distribution over these strengthened labels. We show that our JT kernel (for q = 1) overcomes the shortcoming of discarding non-isomorphic substructures arising in the R-convolution kernels. Moreover, we prove that the proposed JT kernels generalize the Jensen-Shannon graph kernel [2] (for q = 1) and the classical subtree kernel [3] (for q = 2), respectively. Experimental evaluations demonstrate the effectiveness and efficiency of the JT kernels.

[1]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[2]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[3]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[4]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[5]  Bernhard Schölkopf,et al.  Learning Theory and Kernel Machines , 2003, Lecture Notes in Computer Science.

[6]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[7]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[8]  Tatsuya Akutsu,et al.  Extensions of marginalized graph kernels , 2004, ICML.

[9]  Tony Jebara,et al.  Probability Product Kernels , 2004, J. Mach. Learn. Res..

[10]  Hans-Peter Kriegel,et al.  Shortest-path kernels on graphs , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[11]  S. Furuichi Information theoretical properties of Tsallis entropies , 2004, cond-mat/0405600.

[12]  Kaspar Riesen,et al.  A Family of Novel Graph Kernels for Structural Pattern Recognition , 2007, CIARP.

[13]  N. Alon,et al.  Non-backtracking random walks mix faster , 2006, math/0610550.

[14]  José Francisco Martínez-Trinidad,et al.  Progress in Pattern Recognition, Image Analysis and Applications, 12th Iberoamericann Congress on Pattern Recognition, CIARP 2007, Valparaiso, Chile, November 13-16, 2007, Proceedings , 2008, CIARP.

[15]  Karsten M. Borgwardt,et al.  Fast subtree kernels on graphs , 2009, NIPS.

[16]  Kurt Mehlhorn,et al.  Efficient graphlet kernels for large graph comparison , 2009, AISTATS.

[17]  Eric P. Xing,et al.  Nonextensive Information Theoretic Kernels on Measures , 2009, J. Mach. Learn. Res..

[18]  Fabrizio Costa,et al.  Fast Neighborhood Subgraph Pairwise Distance Kernel , 2010, ICML.

[19]  Kaspar Riesen,et al.  Graph Classification and Clustering Based on Vector Space Embedding , 2010, Series in Machine Perception and Artificial Intelligence.

[20]  Francisco Escolano,et al.  Graph-Based Representations in Pattern Recognition, 6th IAPR-TC-15 International Workshop, GbRPR 2007, Alicante, Spain, June 11-13, 2007, Proceedings , 2007, GbRPR.

[21]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[22]  Edwin R. Hancock,et al.  Graph Kernels from the Jensen-Shannon Divergence , 2012, Journal of Mathematical Imaging and Vision.

[23]  Nils M. Kriege,et al.  Subgraph Matching Kernels for Attributed Graphs , 2012, ICML.

[24]  Edwin R. Hancock,et al.  Jensen-Shannon graph kernel using information functionals , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[25]  Edwin R. Hancock,et al.  Approximate Axial Symmetries from Continuous Time Quantum Walks , 2012, SSPR/SPR.

[26]  Horst Bunke,et al.  A Unified Framework for Strengthening Topological Node Features and Its Application to Subgraph Isomorphism Detection , 2013, GbRPR.

[27]  Edwin R. Hancock,et al.  Graph Characteristics from the Schrödinger Operator , 2013, GbRPR.

[28]  Edwin R. Hancock,et al.  Backtrackless Walks on a Graph , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[29]  Richard C. Wilson,et al.  Characterizing graph symmetries through quantum Jensen-Shannon divergence. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Mark Hillery,et al.  Finding structural anomalies in star graphs using quantum walks: a general approach , 2013, Physical review letters.

[31]  Edwin R. Hancock,et al.  A quantum Jensen-Shannon graph kernel for unattributed graphs , 2015, Pattern Recognit..