Laminar origin of striatal and thalamic projections of the prefrontal cortex in rhesus monkeys

Prefrontostriatal and prefrontothalamic connections in rhesus monkeys have been shown to be organized in a topographic manner. These projections originate largely from infragranular layers V and VI. To examine whether the striatal and thalamic connections from the prefrontal cortex arise from separate neuronal populations or are collateralized, two different fluorescent retrograde tracers (diamidino yellow and fast blue) were injected into topographically similar regions of the head of the caudate nucleus and the mediodorsal nucleus in the same animal. The results show that although prefrontostriatal and prefrontothalamic projections arise from similar topographic regions, their laminar origins are distinctive. The connections to the head of the caudate nucleus originate mainly from layer Va, to a lesser extent from layer Vb, with a minor contribution from layers III and VI. In contrast, the projections to the mediodorsal nucleus emanate largely from layer VI, and also from layer Vb. Only occasional double-labeled neurons were observed, indicating that prefrontostriatal and prefrontothalamic connections originate from separate neuronal populations. The differential laminar distributions of neurons projecting to the head of the caudate nucleus and the mediodorsal nucleus suggest that these structures may receive independent types of information from the prefrontal cortex.

[1]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[2]  K. Welch,et al.  Experimental production of unilateral neglect in monkeys. , 1958, Brain : a journal of neurology.

[3]  K. Akert,et al.  Insular and opercular cortex and its thalamic projection in Macaca mulatta. , 1963, Schweizer Archiv fur Neurologie, Neurochirurgie und Psychiatrie = Archives suisses de neurologie, neurochirurgie et de psychiatrie.

[4]  J M Delgado,et al.  Inhibition induced by forebrain stimulation in the monkey. , 1963, The American journal of physiology.

[5]  H. Burton,et al.  Projection of taste nerve afferents to anterior opercular-insular cortex in squirrel monkey (Saimiri sciureus). , 1968, Brain research.

[6]  M. Mishkin,et al.  Emotional Responses Toward Humans in Monkeys with Selective Frontal Lesions , 1968 .

[7]  Rosvold He The frontal lobe system: cortical-subcortical interrelationships. , 1972 .

[8]  H. E. Rosvold,et al.  The frontal lobe system: cortical-subcortical interrelationships. , 1972, Acta neurobiologiae experimentalis.

[9]  D. R. Snyder,et al.  Alterations in aversive and aggressive behaviors following orbital frontal lesions in rhesus monkeys. , 1972, Acta neurobiologiae experimentalis.

[10]  D. Ganchrow,et al.  Thalamocortical relations in gustation. , 1972, Brain research.

[11]  I. Divac Neostriatum and functions of prefrontal cortex. , 1972, Acta neurobiologiae experimentalis.

[12]  J. Stamm Functional dissociation between the inferior and arcuate segments of dorsolateral prefrontal cortex in the monkey. , 1973, Neuropsychologia.

[13]  G. E. Alexander,et al.  Effects of cooling prefrontal cortex on cell firing in the nucleus medialis dorsalis. , 1973, Brain research.

[14]  F. P. Wirth Insular‐diencephalic connections in the Macaque , 1973, The Journal of comparative neurology.

[15]  S. Iversen,et al.  , Mishkin M:Comparison of superior temporal and inferior prefrontal lesions on auditory and non-auditory tasks in rhesus monkeys. , 1973, Brain research.

[16]  J M Fuster,et al.  Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. , 1973, Brain research.

[17]  R. Benjamin,et al.  Unit discharges in the mediodorsal nucleus of the squirrel monkey evoked by electrical stimulation of the olfactory bulb. , 1974, Brain research.

[18]  F. Motokizawa Olfactory input to the thalamus: electrophysiological evidence. , 1974, Brain research.

[19]  R. Norgren,et al.  Projections of thalamic gustatory and lingual areas in the rat , 1975, Brain Research.

[20]  Richard Passingham,et al.  Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta) , 1975, Brain Research.

[21]  T. Tanabe,et al.  An olfactory projection area in orbitofrontal cortex of the monkey. , 1975, Journal of neurophysiology.

[22]  H. Burton,et al.  Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates , 1976, The Journal of comparative neurology.

[23]  Masataka Watanabe,et al.  Prefrontal unit activity and delayed response: Relation to cue location versus direction of response , 1976, Brain Research.

[24]  J. Fuster,et al.  Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. , 1976, Journal of comparative and physiological psychology.

[25]  R. Porter,et al.  Cells of origin and terminal distrubution of corticostriatal fibers arising in the sensory‐motor cortex of monkeys , 1977, The Journal of comparative neurology.

[26]  P. Maclean,et al.  Effects of vagal volleys on units of intralaminar and juxtalaminar thalamic nuclei in monkeys , 1977, Brain Research.

[27]  E. Yeterian,et al.  Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections , 1978, Brain Research.

[28]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[29]  T. Tanabe,et al.  A transthalamic olfactory pathway to orbitofrontal cortex in the monkey. , 1980, Journal of neurophysiology.

[30]  H. D. Steklis,et al.  Effects of orbitofrontal and temporal neocortical lesions on the affiliative behavior of vervet monkeys (Cercopithecus aethiops sabaeus) , 1981, Experimental Neurology.

[31]  G. Rizzolatti,et al.  Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses , 1981, Behavioural Brain Research.

[32]  Joaquin M. Fuster,et al.  Single cell activity in ventral prefrontal cortex of behaving monkeys , 1981, Brain Research.

[33]  Carlo Marzi,et al.  The role of frontal eye-fields and superior colliculi in visual search and non-visual search in rhesus monkeys , 1982, Behavioural Brain Research.

[34]  P. Goldman-Rakic,et al.  Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys , 1982, Brain Research.

[35]  S. Thorpe,et al.  Responses of striatal neurons in the behaving monkey. 1. Head of the caudate nucleus , 1983, Behavioural Brain Research.

[36]  K. Kubota,et al.  Columnar aggregation of prefrorital and anterior cingulate cortical cells projecting to the thalamic mediodorsal nucleus in the monkey , 1983, The Journal of comparative neurology.

[37]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[38]  M. Mishkin,et al.  Visual recognition impairment following medial thalamic lesions in monkeys , 1983, Neuropsychologia.

[39]  J Schlag,et al.  Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. , 1984, Journal of neurophysiology.

[40]  M. Schlag-Rey,et al.  Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. , 1984, Journal of neurophysiology.

[41]  Shozo Kojima,et al.  Functional analysis of spatially discriminative neurons in prefrontal cortex of rhesus monkey , 1984, Brain Research.

[42]  Tomoya Yamamoto,et al.  Neuronal activity in the medial orbitofrontal cortex of the behaving monkey: Modulation by glucose and satiety , 1984, Brain Research Bulletin.

[43]  T. Ono,et al.  Caudate unit activity during operant feeding behavior in monkeys and modulation by cooling prefrontal cortex , 1984, Behavioural Brain Research.

[44]  C. Bruce,et al.  Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey , 1985, Vision Research.

[45]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  T Kusama,et al.  Connections of the fronto-parietal operculum and the postcentral gyrus with the posterior ventral thalamic nucleus, especially its medial nucleus, in monkeys. , 1985, Journal fur Hirnforschung.

[47]  R E Passingham Memory of monkeys (Macaca mulatta) with lesions in prefrontal cortex. , 1985, Behavioral neuroscience.

[48]  D. Rosene,et al.  A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. , 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[49]  E. Vaadia,et al.  Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. , 1986, Journal of neurophysiology.

[50]  R B Hamilton,et al.  Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis , 1986, The Journal of comparative neurology.

[51]  T. R. Scott,et al.  Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. , 1986, Journal of neurophysiology.

[52]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[53]  K. Kubota,et al.  The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: A retrograde study using HRP‐gel , 1986, The Journal of comparative neurology.

[54]  Role of the central thalamus in gaze control. , 1986, Progress in brain research.

[55]  N. A. Buchwald,et al.  Branched projections of cat sensorimotor cortex: multiple retrograde labeling via commissural corticocortical, decussated corticostriatal and undecussated corticostriatal axons , 1986, Brain Research.

[56]  J. Glowinski,et al.  Interhemispheric and subcortical collaterals of medial prefrontal cortical neurons in the rat , 1987, Brain Research.

[57]  D. Amaral,et al.  The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis , 1987, The Journal of comparative neurology.

[58]  P. Goldman-Rakic,et al.  Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  P S Goldman-Rakic,et al.  Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys , 1988, The Journal of comparative neurology.

[60]  M. Azuma,et al.  Relation between visual input and motor outflow for eye movements in monkey frontal eye field , 1988, Behavioural Brain Research.

[61]  T. R. Scott,et al.  The responsiveness of neurones in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. , 1988, The Journal of physiology.

[62]  Javier Quintana,et al.  Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information , 1988, Brain Research.

[63]  O Hikosaka,et al.  Functional properties of monkey caudate neurons. II. Visual and auditory responses. , 1989, Journal of neurophysiology.

[64]  Hisashi Ogawa,et al.  Oral cavity representation at the frontal operculum of macaque monkeys , 1989, Neuroscience Research.

[65]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. , 1989, Journal of neurophysiology.

[66]  D. Gaffan,et al.  A comparison of the effects of fornix transection and sulcus principalis ablation upon spatial learning by monkeys , 1989, Behavioural Brain Research.

[67]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[68]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. , 1989, Journal of neurophysiology.

[69]  D. Gaffan,et al.  Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus-reward associative learning in the monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  J. Kaas,et al.  Supplementary eye field as defined by intracortical microstimulation: Connections in macaques , 1990, The Journal of comparative neurology.

[71]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[72]  E. Rolls,et al.  Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. , 1990, Journal of neurophysiology.

[73]  Leslie G. Ungerleider,et al.  Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido‐nigral complex in the monkey , 1990, The Journal of comparative neurology.

[74]  C. Bruce,et al.  Smooth-pursuit eye movement representation in the primate frontal eye field. , 1991, Cerebral cortex.

[75]  P. Goldman-Rakic,et al.  Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey , 1991, Neuroscience.

[76]  D. Pandya,et al.  Prefrontal projections to the mediodorsal nucleus of the thalamus in the rhesus monkey , 1991, The Journal of comparative neurology.

[77]  S P Wise,et al.  A neurophysiological comparison of three distinct regions of the primate frontal lobe. , 1991, Brain : a journal of neurology.

[78]  J. Schall Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. , 1991, Journal of neurophysiology.

[79]  D. Pandya,et al.  Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys , 1991, The Journal of comparative neurology.

[80]  P. Goldman-Rakic,et al.  Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. , 1991, Journal of neurophysiology.

[81]  Mortimer Mishkin,et al.  The role of the inferior prefrontal convexity in performance of delayed nonmatching-to-sample , 1991, Neuropsychologia.

[82]  A. Graybiel,et al.  Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  T. R. Scott,et al.  Taste neurons in the cortex of the alert cynomolgus monkey , 1992, Brain Research Bulletin.

[84]  W. Schultz,et al.  Neuronal activity in monkey ventral striatum related to the expectation of reward , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[86]  P. Goldman-Rakic,et al.  Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas" , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  H. Tanila,et al.  Regional distribution of functions in dorsolateral prefrontal cortex of the monkey , 1993, Behavioural Brain Research.

[88]  A. Cowey,et al.  On the role of posterior parietal and prefrontal cortex in visuo-spatial perception and attention , 2004, Experimental Brain Research.

[89]  W. B. Spatz Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus , 1977, Experimental Brain Research.

[90]  M. Schlag-Rey,et al.  The frontal eye field provides the goal of saccadic eye movement , 2004, Experimental Brain Research.

[91]  M. Mishkin,et al.  Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity , 1970, Experimental Brain Research.

[92]  J. Lynch Frontal eye field lesions in monkeys disrupt visual pursuit , 2004, Experimental Brain Research.