7 Digital Soil-Terrain Modeling: The Predictive Potential and Uncertainty

Research in the past 20 years has demonstrated that digital terrain models are a useful secondary information source for the prediction of soil properties and classes. This chapter begins with a brief introduction to digital terrain modeling; in particular, the types of terrain attributes that can be calculated from a digital elevation model (DEM) are described. The next section reviews soil-terrain modeling, with an emphasis on the variety of prediction methods that have been used. A summary of published soil-terrain studies is given. The second half of the chapter presents a case study aimed at illustrating the impact that the source DEM spatial resolution and uncertainty have on soil-terrain prediction models. The study site is a 74-ha field in Australia. The datasets include a 5-m DEM created from a carrier-phase global positioning systems (GPS) survey, a 25-m

[1]  B. Lowery,et al.  Identification of the spatial distribution of soils using a process-based terrain characterization , 2001 .

[2]  M. Hutchinson A new procedure for gridding elevation and stream line data with automatic removal of spurious pits , 1989 .

[3]  Nunzio Romano,et al.  Prediction of soil water retention using soil physical data and terrain attributes , 2002 .

[4]  Larry Biehl,et al.  Use of combined digital elevation model and satellite radiometric data for regional soil mapping , 2000 .

[5]  N. McKenzie,et al.  Spatial prediction of soil properties using environmental correlation , 1999 .

[6]  J. Carter,et al.  The Effect Of Data Precision On The Calculation Of Slope And Aspect Using Gridded Dems , 1992 .

[7]  Richard J. Pike,et al.  The geometric signature: Quantifying landslide-terrain types from digital elevation models , 1988 .

[8]  Wanglu Peng,et al.  Delineating patterns of soil drainage class on bare soils using remote sensing analyses , 2003 .

[9]  Neil McKenzie,et al.  Integrating forest soils information across scales: spatial prediction of soil properties under Australian forests. , 2000 .

[10]  Jean-Jacques Macaire,et al.  Relationship of the presence of a non-calcareous clay–loam horizon to DEM attributes in a gently sloping area , 1999 .

[11]  M. Goodchild,et al.  Uncertainty in geographical information , 2002 .

[12]  John Triantafilis,et al.  COMPARISON OF STATISTICAL PREDICTION METHODS FOR ESTIMATING FIELD-SCALE CLAY CONTENT USING DIFFERENT COMBINATIONS OF ANCILLARY VARIABLES , 2001 .

[13]  Dominique King,et al.  Improving the kriging of a soil variable using slope gradient as external drift , 1996 .

[14]  Jeff Dozier,et al.  Information Analysis of a Spatial Database for Ecological Land classification , 1990 .

[15]  R. M. Lark,et al.  Soil–landform relationships at within-field scales: an investigation using continuous classification , 1999 .

[16]  Alex B. McBratney,et al.  Predicting Soil Properties from Ancillary Information: Non-Spatial Models Compared with Geostatistical and Combined Methods , 1997 .

[17]  R. Iman,et al.  A distribution-free approach to inducing rank correlation among input variables , 1982 .

[18]  G. Heuvelink,et al.  Latin Hypercube Sampling of Gaussian Random Fields , 1999, Technometrics.

[19]  A. R. Aandahl,et al.  The Characterization of Slope Positions and Their Influence on the Total Nitrogen Content of a Few Virgin Soils of Western Iowa , 1949 .

[20]  Paul E. Gessler,et al.  Modeling Soil–Landscape and Ecosystem Properties Using Terrain Attributes , 2000 .

[21]  Walter J. Rawls,et al.  Soil Water Retention as Related to Topographic Variables , 2001 .

[22]  Alex B. McBratney,et al.  Elucidation of soil-landform interrelationships by canonical ordination analysis , 1991 .

[23]  Karl Auerswald,et al.  Using relief parameters in a discriminant analysis to stratify geological areas with different spatial variability of soil properties , 1999 .

[24]  Paul L. G. Vlek,et al.  Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques , 2002 .

[25]  R. Isbell Australian Soil Classification , 1996 .

[26]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[27]  B. M. Evans,et al.  Accuracy of SPOT digital elevation model and derivatives: utility for Alaska's North slope , 1992 .

[28]  Budiman Minasny,et al.  On digital soil mapping , 2003 .

[29]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[30]  P. Bolstad,et al.  An evaluation of DEM accuracy: elevation, slope, and aspect , 1994 .

[31]  Elisabeth N. Bui,et al.  Spatial data mining for enhanced soil map modelling , 2002, Int. J. Geogr. Inf. Sci..

[32]  Elisabeth N. Bui,et al.  Extracting soil-landscape rules from previous soil surveys , 1999 .

[33]  Alex B. McBratney,et al.  An overview of pedometric techniques for use in soil survey , 2000 .

[34]  M. Costa-Cabral,et al.  Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas , 1994 .

[35]  Christian Walter,et al.  Improving soil hydromorphy prediction according to DEM resolution and available pedological data , 2000 .

[36]  Budiman Minasny,et al.  A rudimentary mechanistic model for soil formation and landscape development: II. A two-dimensional model incorporating chemical weathering , 2001 .

[37]  A-Xing Zhu,et al.  A Knowledge-Based Approach to Data Integration for Soil Mapping , 1994 .

[38]  P. Atkinson,et al.  Uncertainty in remote sensing and GIS , 2002 .

[39]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .

[40]  A. McBratney,et al.  Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging , 1995 .

[41]  Giles M. Foody,et al.  Uncertainty in Remote Sensing and GIS: Foody/Uncertainty in Remote Sensing and GIS , 2006 .

[42]  P. A. Shary,et al.  Fundamental quantitative methods of land surface analysis , 2002 .

[43]  Igor V. Florinsky,et al.  Quantitative topographic analysis of gilgai soil morphology , 1998 .

[44]  Joseph. Wood,et al.  The geomorphological characterisation of Digital Elevation Models , 1996 .

[45]  John P. Wilson,et al.  Terrain analysis : principles and applications , 2000 .

[46]  Graham J. G. Upton,et al.  A Dictionary of Statistics , 2002 .

[47]  R. Protz,et al.  Relation between Landform Parameters and Soil Properties1 , 1968 .

[48]  Andrew K. Skidmore,et al.  Use of an expert system to map forest soils from a geographical information system , 1991, Int. J. Geogr. Inf. Sci..

[49]  I. Evans Statistical Characterization of Altitude Matrices by Computer. Report 6. An Integrated System of Terrain Analysis and Slope Mapping. , 1979 .

[50]  Michael F. Hutchinson,et al.  Digital elevation models and representation of terrain shape , 2000 .

[51]  H. Jenny,et al.  Factors of Soil Formation , 1941 .

[52]  James C. Bell,et al.  Calibration and Validation of a Soil-Landscape Model for Predicting Soil Drainage Class , 1992 .

[53]  Steven W. Running,et al.  Comparison of available soil water capacity estimated from topography and soil series information , 2005, Landscape Ecology.

[54]  Paul E. Gessler,et al.  Soil-Landscape Modelling and Spatial Prediction of Soil Attributes , 1995, Int. J. Geogr. Inf. Sci..

[55]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[56]  A. Skidmore,et al.  An Operational GIS Expert System for Mapping Forest Soils , 1996 .

[57]  E. R. Levine,et al.  Predicting Soil Drainage Class Using Remotely Sensed and Digital Elevation Data , 1997 .

[58]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[59]  Philippe Lagacherie,et al.  Addressing Geographical Data Errors in a Classification Tree for Soil Unit Prediction , 1997, Int. J. Geogr. Inf. Sci..

[60]  F. R. Troeh,et al.  Landform Parameters Correlated to Soil Drainage 1 , 1964 .

[61]  James C. Bell,et al.  Quantitative Soil‐Landscape Modeling for Estimating the Areal Extent of Hydromorphic Soils , 1997 .

[62]  B. Everitt The Cambridge Dictionary of Statistics , 1998 .

[63]  R. Huggett,et al.  Soil landscape systems: A model of soil Genesis , 1975 .

[64]  Dominique King,et al.  Predicting soil classes with parameters derived from relief and geologic materials in a sandstone region of the Vosges mountains (Northeastern France) , 1999 .

[65]  Luca Montanarella,et al.  A regional scale soil mapping approach using integrated AVHRR and DEM data , 2001 .

[66]  Dominique Arrouays,et al.  Spatial analysis and modeling of topsoil carbon storage in temperate forest humic loamy soils of France , 1995 .

[67]  S. de Bruin,et al.  Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM) , 1998 .

[68]  Dan Pennock,et al.  Landform classification and soil distribution in hummocky terrain , 1987 .

[69]  Alex B. McBratney,et al.  A comparison of prediction methods for the creation of field-extent soil property maps , 2001 .

[70]  P. Birkeland,et al.  Soils and Geomorphology , 1984 .

[71]  Jay C. Bell,et al.  Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling , 2001 .

[72]  Neil McKenzie,et al.  A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation , 1993 .

[73]  Gary A. Peterson,et al.  Soil Attribute Prediction Using Terrain Analysis , 1993 .

[74]  Keith Beven,et al.  Catchment geomorphology and the dynamics of runoff contributing areas , 1983 .

[75]  Anne Gobin,et al.  Logistic Modeling to Spatially Predict the Probability of Soil Drainage Classes , 2002 .

[76]  Henry N. Pollack A Numerical Model of Grand Canyon , 1969 .