Vibrational properties of epitaxial silicene layers on (111) Ag
暂无分享,去创建一个
Daniele Chiappe | Eugenio Cinquanta | Carlo Grazianetti | Alessandro Molle | Andre Stesmans | Geoffrey Pourtois | Michel Houssa | Marco Fanciulli | Valery V. Afanas'ev | G. Pourtois | A. Stesmans | M. Fanciulli | M. Houssa | E. Scalise | V. Afanas'ev | D. Chiappe | Emilio Scalise | B. van den Broek | B. Ealet | B. Ealet | A. Molle | C. Grazianetti | E. Cinquanta | B. Broek
[1] Daniele Chiappe,et al. Hindering the Oxidation of Silicene with Non‐Reactive Encapsulation , 2013 .
[2] Angel Rubio,et al. Electronic structure of silicene on Ag(111): Strong hybridization effects , 2013, 1305.2410.
[3] N. Takagi,et al. Substrate-induced symmetry breaking in silicene. , 2013, Physical review letters.
[4] L. Meng,et al. Buckled silicene formation on Ir(111). , 2013, Nano letters.
[5] M. Fanciulli,et al. Getting through the Nature of Silicene: An sp2–sp3 Two-Dimensional Silicon Nanosheet , 2012, 1212.5422.
[6] Daniele Chiappe,et al. Local Electronic Properties of Corrugated Silicene Phases , 2012, Advanced materials.
[7] Abdelkader Kara,et al. Silicene structures on silver surfaces , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[8] Hiroyuki Kawai,et al. Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.
[9] Patrick Vogt,et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.
[10] Peng Cheng,et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.
[11] G. Pourtois,et al. Vibrational properties of silicene and germanene , 2012, Nano Research.
[12] Electronic Properties of Silicene: Insights from First-Principles Modeling , 2011 .
[13] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[14] E. Akturk,et al. Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.
[15] Francesco Mauri,et al. Impact of the electron-electron correlation on phonon dispersion:Failure of LDA and GGA DFT functionals in graphene and graphite. , 2008, 0808.2285.
[16] A. Ferrari,et al. Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .
[17] Andre K. Geim,et al. The rise of graphene. , 2007, Nature materials.
[18] Andre K. Geim,et al. Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.
[19] J. Robertson,et al. Kohn anomalies and electron-phonon interactions in graphite. , 2004, Physical review letters.
[20] M. Lazzeri,et al. First-principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2. , 2002, Physical review letters.
[21] Ruiqin Q. Zhang,et al. Silicon nanotubes: Why not? , 2002 .
[22] Stefano de Gironcoli,et al. Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.
[23] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[24] Martins,et al. Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.
[25] Paxton,et al. High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.
[26] R. N. Tyte,et al. Resonant Raman scattering in silicon , 1975 .
[27] W. Kohn. Image of the Fermi Surface in the Vibration Spectrum of a Metal , 1959 .
[28] H. N. Moseley. The Ceylon Elephant at the Oxford Museum , 1872, Nature.