Binder-free carbon-coated TiO2@graphene electrode by using copper foam as current collector as a high-performance anode for lithium ion batteries

[1]  Feng Gao,et al.  Fabrication of F-doped, C-coated NiCo2O4 nanocomposites and its electrochemical performances for lithium-ion batteries , 2019, Solid State Ionics.

[2]  Jun Lu,et al.  Graphene Wrapped FeSe2 Nano‐Microspheres with High Pseudocapacitive Contribution for Enhanced Na‐Ion Storage , 2019, Advanced Energy Materials.

[3]  Meilin Liu,et al.  Scalable synthesis of FeS2 nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode. , 2019, Nanoscale.

[4]  Jia-feng Zhang,et al.  In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries , 2018, Nano Energy.

[5]  Bao Zhang,et al.  Ultrahigh rate and long-life nano-LiFePO4 cathode for Li-ion batteries , 2018, Electrochimica Acta.

[6]  Bao Zhang,et al.  Nano-micro structure VO2/CNTs composite as a potential anode material for lithium ion batteries , 2018, Ceramics International.

[7]  Biaobiao Yang,et al.  Comparative Investigation of Na2FeP2O7 Sodium Insertion Material Synthesized by Using Different Sodium Sources , 2018 .

[8]  Caiyun Wang,et al.  Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage , 2018 .

[9]  Hongsen Li,et al.  3D Heterogeneous Co3O4@Co3S4 Nanoarrays Grown on Ni Foam as a Binder‐Free Electrode for Lithium‐Ion Batteries , 2018 .

[10]  C. O’Dwyer,et al.  Rutile TiO2 Inverse Opal Anodes for Li‐Ion Batteries with Long Cycle Life, High‐Rate Capability, and High Structural Stability , 2017 .

[11]  E. Cairns,et al.  In situ-formed LiVOPO4@V2O5 core-shell nanospheres as a cathode material for lithium-ion cells , 2017 .

[12]  D. Zhao,et al.  Mesoporous TiO2@N-doped carbon composite nanospheres synthesized by the direct carbonization of surfactants after sol-gel process for superior lithium storage. , 2017, Nanoscale.

[13]  Jiawei Wang,et al.  Free-standing CuO nanoflake arrays coated Cu foam for advanced lithium ion battery anodes , 2016 .

[14]  Penghui Ji,et al.  Nano-Sn doped carbon-coated rutile TiO2 spheres as a high capacity anode for Li-ion battery , 2016 .

[15]  Qiaobao Zhang,et al.  Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors. , 2015, ACS applied materials & interfaces.

[16]  Joseph Paul Baboo,et al.  Hierarchical porous anatase TiO2 derived from a titanium metal-organic framework as a superior anode material for lithium ion batteries. , 2015, Chemical communications.

[17]  Mingdeng Wei,et al.  In situ synthesis of GeO2/reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries , 2015 .

[18]  D. Dunand,et al.  3D interconnected SnO2-coated Cu foam as a high-performance anode for lithium-ion battery applications , 2014 .

[19]  Xin-bo Zhang,et al.  Homogeneous CoO on Graphene for Binder‐Free and Ultralong‐Life Lithium Ion Batteries , 2013 .

[20]  Yong Yan,et al.  Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage. , 2013, ACS applied materials & interfaces.

[21]  Dongwook Han,et al.  Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries , 2012 .

[22]  Yong Wang,et al.  Shape-controlled synthesis of TiO2 hollow structures and their application in lithium batteries , 2012 .

[23]  X. Lou,et al.  Graphene-supported anatase TiO2 nanosheets for fast lithium storage. , 2011, Chemical communications.

[24]  D. He,et al.  Nanostructured NiO electrode for high rate Li-ion batteries , 2011 .

[25]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .