Maximum upward planar subgraphs of embedded planar digraphs

Let G be an embedded planar digraph. A maximum upward planar subgraph of G is an embedding preserving subgraph that is upward planar and, among those, has the maximum number of edges. This paper presents an extensive study on the problem of computing maximum upward planar subgraphs of embedded planar digraphs: Complexity results, algorithms, and experiments are presented. Namely: (i) we prove that the addressed problem is NP-Hard; (ii) a fast heuristic and an exponential-time exact algorithm are described; (iii) a wide experimental analysis is performed to show the effectiveness of our techniques.

[1]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[2]  J. van Leeuwen,et al.  Drawing Graphs , 2001, Lecture Notes in Computer Science.

[3]  Giuseppe Di Battista,et al.  A Note on Optimal Area Algorithms for Upward Drawings of Binary Trees , 1992, Comput. Geom..

[4]  Paolo Penna,et al.  Linear area upward drawings of AVL trees , 1998, Comput. Geom..

[5]  Patrick Healy,et al.  Two Fixed-parameter Tractable Algorithms for Testing Upward Planarity , 2006, Int. J. Found. Comput. Sci..

[6]  MICHAEL D. HUTTON,et al.  Upward planar drawing of single source acyclic digraphs , 1991, SODA '91.

[7]  Edward M. Reingold,et al.  Tidier Drawings of Trees , 1981, IEEE Transactions on Software Engineering.

[8]  David Kelly Fundamentals of planar ordered sets , 1987, Discret. Math..

[9]  Walter Didimo Upward Planar Drawings and Switch-regularity Heuristics , 2006, J. Graph Algorithms Appl..

[10]  Michael T. Goodrich,et al.  Planar upward tree drawings with optimal area , 1996, Int. J. Comput. Geom. Appl..

[11]  Roberto Tamassia,et al.  Algorithms for Plane Representations of Acyclic Digraphs , 1988, Theor. Comput. Sci..

[12]  Helen C. Purchase,et al.  Effective information visualisation: a study of graph drawing aesthetics and algorithms , 2000, Interact. Comput..

[13]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[14]  Ioannis G. Tollis,et al.  Area requirement and symmetry display of planar upward drawings , 1992, Discret. Comput. Geom..

[15]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[16]  Walter Didimo,et al.  Quasi-Upward Planarity , 1998, Algorithmica.

[17]  Patrick Healy,et al.  Fixed-Parameter Tractable Algorithms for Testing Upward Planarity , 2005, SOFSEM.

[18]  Kyung-Yong Chwa,et al.  Area-efficient algorithms for straight-line tree drawings , 2000, Comput. Geom..

[19]  Carlo Mannino,et al.  Optimal Upward Planarity Testing of Single-Source Digraphs , 1993, ESA.

[20]  Michael Kaufmann,et al.  An Approach for Mixed Upward Planarization , 2001, J. Graph Algorithms Appl..

[21]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[22]  Walter Didimo,et al.  Upward Spirality and Upward Planarity Testing , 2005, SIAM J. Discret. Math..

[23]  Hubert Y. Chan,et al.  A Parameterized Algorithm for Upward Planarity Testing , 2004 .

[24]  Achilleas Papakostas Upward Planarity Testing of Outerplanar Dags , 1994, Graph Drawing.

[25]  Giuseppe Liotta,et al.  An Experimental Comparison of Four Graph Drawing Algorithms , 1997, Comput. Geom..

[26]  Carlo Mannino,et al.  Upward drawings of triconnected digraphs , 2005, Algorithmica.

[27]  R. Tamassia,et al.  Upward planarity testing , 1995 .

[28]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[29]  Sung Kwon Kim Simple algorithms for orthogonal upward drawings of binary and ternary trees , 1995, CCCG.

[30]  Luca Trevisan A Note on Minimum-Area Upward Drawing of Complete and Fibonacci Trees , 1996, Inf. Process. Lett..

[31]  C. R. Platt,et al.  Planar lattices and planar graphs , 1976, J. Comb. Theory, Ser. B.