Phantom mutation hotspots in human mitochondrial DNA

Phantom mutations are systematic artifacts generated in the course of the sequencing process. Contra common belief these artificial mutations are nearly ubiquitous in sequencing results, albeit at frequencies that may vary dramatically. The amount of artifacts depends not only on the sort of automated sequencer and sequencing chemistry employed, but also on other lab‐specific factors. An experimental study executed on four samples under various combinations of sequencing conditions revealed a number of phantom mutations occurring at the same sites of mitochondrial DNA (mtDNA) repeatedly. To confirm these and identify further hotspots for artifacts, > 5000 mtDNA electropherograms were screened for artificial patterns. Further, > 30 000 published hypervariable segment I sequences were compared at potential hotspots for phantom mutations, especially for variation at positions 16085 and 16197. Resequencing of several samples confirmed the artificial nature of these and other polymorphisms in the original publications. Single‐strand sequencing, as typically executed in medical and anthropological studies, is thus highly vulnerable to this kind of artifacts. In particular, phantom mutation hotspots could easily lead to misidentification of somatic mutations and to misinterpretations in all kinds of clinical mtDNA studies.

[1]  P. Moral,et al.  Mitochondrial sequence variation in the Guahibo Amerindian population from Venezuela. , 2005, American journal of physical anthropology.

[2]  Cecil M. Lewis,et al.  Land, language, and loci: mtDNA in Native Americans and the genetic history of Peru. , 2005, American journal of physical anthropology.

[3]  A. Pérez-Lezaun,et al.  Mitochondrial DNA error prophylaxis: assessing the causes of errors in the GEP'02-03 proficiency testing trial. , 2005, Forensic science international.

[4]  C. Shee,et al.  Mitochondrial DNA hypervariable region 1 polymorphism in Singapore Chinese population. , 2005, Legal medicine.

[5]  W. Salzburger,et al.  Mitochondrial phylogeny of the Cyprichromini, a lineage of open-water cichlid fishes endemic to Lake Tanganyika, East Africa. , 2005, Molecular phylogenetics and evolution.

[6]  T. Kivisild,et al.  Mitochondrial genes and schizophrenia , 2005, Schizophrenia Research.

[7]  Q. Kong,et al.  Different matrilineal contributions to genetic structure of ethnic groups in the silk road region in china. , 2004, Molecular biology and evolution.

[8]  Hans-Jürgen Bandelt,et al.  Phylogeny of mitochondrial DNA macrohaplogroup N in India, based on complete sequencing: implications for the peopling of South Asia. , 2004, American journal of human genetics.

[9]  I. Rogozin,et al.  On the Etruscan mitochondrial DNA contribution to modern humans. , 2004, American journal of human genetics.

[10]  M. Zeviani,et al.  The molecular dissection of mtDNA haplogroup H confirms that the Franco-Cantabrian glacial refuge was a major source for the European gene pool. , 2004, American journal of human genetics.

[11]  A. Tamori,et al.  Correlation between clinical characteristics and mitochondrial D-loop DNA mutations in hepatocellular carcinoma , 2004, Journal of Gastroenterology.

[12]  Hidetoshi Shimodaira,et al.  Mitochondrial genome variation in eastern Asia and the peopling of Japan. , 2004, Genome research.

[13]  Yungang He,et al.  Genetic evidence supports demic diffusion of Han culture , 2004, Nature.

[14]  W. Parson,et al.  Fehlerquellen mitochondrialer DNS-Datensätze und Evaluation der mtDNS-Datenbank „D-Loop-BASE“ , 2004, Rechtsmedizin.

[15]  L. Wong,et al.  Detection of mitochondrial DNA mutations using temporal temperature gradient gel electrophoresis , 2004, Electrophoresis.

[16]  T. Parsons,et al.  Mitochondrial DNA control region sequences from Nairobi (Kenya): inferring phylogenetic parameters for the establishment of a forensic database , 2004, International Journal of Legal Medicine.

[17]  N. Hu,et al.  Control region mutations and the 'common deletion' are frequent in the mitochondrial DNA of patients with esophageal squamous cell carcinoma , 2004, BMC Cancer.

[18]  R. Chakraborty,et al.  Analyses of genetic structure of Tibeto-Burman populations reveals sex-biased admixture in southern Tibeto-Burmans. , 2004, American journal of human genetics.

[19]  K. Yeh,et al.  Molecular alterations in mitochondrial DNA of hepatocellular carcinomas: is there a correlation with clinicopathological profile? , 2004, Journal of Medical Genetics.

[20]  Anita Brandstätter,et al.  EMPOP—the EDNAP mtDNA population database concept for a new generation, high-quality mtDNA database , 2004 .

[21]  W Parson,et al.  Results of a collaborative study of the EDNAP group regarding mitochondrial DNA heteroplasmy and segregation in hair shafts. , 2004, Forensic science international.

[22]  T. Parsons,et al.  Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians , 2004, International Journal of Legal Medicine.

[23]  T. Vaněček,et al.  Mitochondrial DNA D-loop hypervariable regions: Czech population data , 2004, International Journal of Legal Medicine.

[24]  Gillian Tully,et al.  The EDNAP mitochondrial DNA population database (EMPOP) collaborative exercises: organisation, results and perspectives. , 2004, Forensic science international.

[25]  W. Parson,et al.  Monitoring the inheritance of heteroplasmy by computer-assisted detection of mixed basecalls in the entire human mitochondrial DNA control region , 2004, International Journal of Legal Medicine.

[26]  A. Gilles,et al.  Mitochondrial DNA Sequence Diversity in a Sedentary Population from Egypt , 2004, Annals of human genetics.

[27]  R. Villems,et al.  Identification of Native American Founder mtDNAs Through the Analysis of Complete mtDNA Sequences: Some Caveats , 2003, Annals of human genetics.

[28]  Robert W. Taylor,et al.  Genotypes from patients indicate no paternal mitochondrial DNA contribution , 2003, Annals of neurology.

[29]  P. Majumder,et al.  Ethnic India: a genomic view, with special reference to peopling and structure. , 2003, Genome research.

[30]  Enrico Petretto,et al.  Striking differentiation of sub-populations within a genetically homogeneous isolate (Ogliastra) in Sardinia as revealed by mtDNA analysis , 2003, Human Genetics.

[31]  Hans-Jürgen Bandelt,et al.  Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences. , 2003, American journal of human genetics.

[32]  P. Nagley,et al.  High frequency of mitochondrial genome instability in human endometrial carcinomas , 2003, British Journal of Cancer.

[33]  D. Comas,et al.  Joining the Pillars of Hercules: mtDNA Sequences Show Multidirectional Gene Flow in the Western Mediterranean , 2003, Annals of human genetics.

[34]  K. Yeh,et al.  Novel heteroplasmic frameshift and missense somatic mitochondrial DNA mutations in oral cancer of betel quid chewers , 2003, Genes, chromosomes & cancer.

[35]  N. Howell,et al.  Errors, phantoms and otherwise, in human mtDNA sequences. , 2003, American journal of human genetics.

[36]  David C. McLean,et al.  Three Novel mtDNA Restriction Site Polymorphisms Allow Exploration of Population Affinities of African Americans , 2003, Human biology.

[37]  B. Malyarchuk,et al.  High levels of mitochondrial DNA heteroplasmy in single hair roots: Reanalysis and revision , 2003, Electrophoresis.

[38]  Y. Goto,et al.  A novel mtDNA C11777A mutation in Leigh syndrome. , 2003, Mitochondrion.

[39]  W. Parson,et al.  Mitochondrial DNA heteroplasmy or artefacts—a matter of the amplification strategy? , 2003, International Journal of Legal Medicine.

[40]  Marty C. Brandon,et al.  Natural selection shaped regional mtDNA variation in humans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  H. Bandelt,et al.  The fingerprint of phantom mutations in mitochondrial DNA data. , 2002, American journal of human genetics.

[42]  Á. Carracedo,et al.  The making of the African mtDNA landscape. , 2002, American journal of human genetics.

[43]  G. Bertorelle,et al.  Mitochondrial Diversity in Linguistic Isolates of the Alps: A Reappraisal , 2002, Human biology.

[44]  K. Honda,et al.  The specific mitochondrial DNA polymorphism found in Klinefelter's syndrome. , 2002, Biochemical and biophysical research communications.

[45]  Â. Ribeiro-dos-Santos,et al.  Dissimilarities in the process of formation of curiaú, a semi‐isolated Afro‐Brazilian population of the Amazon region , 2002, American journal of human biology : the official journal of the Human Biology Council.

[46]  Ya-ping Zhang,et al.  Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal , 2002, Journal of Human Genetics.

[47]  S. Weis,et al.  Comparison between mitochondrial DNA sequences in low grade astrocytomas and corresponding blood samples , 2002, Molecular pathology : MP.

[48]  Mark R. Wilson,et al.  HVI and HVII mitochondrial DNA data in Apaches and Navajos , 2002, International Journal of Legal Medicine.

[49]  M. Beal,et al.  Sequence analysis of the entire mitochondrial genome in Parkinson's disease. , 2002, Biochemical and biophysical research communications.

[50]  P. Underhill,et al.  Origins and divergence of the Roma (gypsies). , 2001, American journal of human genetics.

[51]  H. Bandelt,et al.  Detecting errors in mtDNA data by phylogenetic analysis , 2001, International Journal of Legal Medicine.

[52]  P. Majumder,et al.  Genomic structures and population histories of linguistically distinct tribal groups of India , 2001, Human Genetics.

[53]  P. Forster,et al.  An annotated mtDNA database , 2001, International Journal of Legal Medicine.

[54]  M. Stoneking,et al.  Mitochondrial DNA variation and language replacements in the Caucasus , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  C. Stringer,et al.  Human Origins and Ancient Human DNA , 2001, Science.

[56]  M. Lehtonen,et al.  Phylogenetic network for European mtDNA. , 2001, American journal of human genetics.

[57]  A. Gilles,et al.  Mitochondrial DNA sequence diversity in two groups of Italian Veneto speakers from Veneto. , 2001, Annals of human genetics.

[58]  S. Pääbo,et al.  Mitochondrial genome variation and the origin of modern humans , 2000, Nature.

[59]  A. Di Rienzo,et al.  Tracing European founder lineages in the Near Eastern mtDNA pool. , 2000, American journal of human genetics.

[60]  P. Donnelly,et al.  The mutation rate in the human mtDNA control region. , 2000, American journal of human genetics.

[61]  T. Grzybowski Extremely high levels of human mitochondrial DNA heteroplasmy in single hair roots , 2000, Electrophoresis.

[62]  L. Fang,et al.  Sequence polymorphism in the mtDNA HV1 region in Japanese and Chinese. , 1999, Legal medicine.

[63]  L. Excoffier,et al.  Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees. , 1999, Molecular biology and evolution.

[64]  D. Turnbull,et al.  Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA , 1999, Nature Genetics.

[65]  A. González,et al.  Phylogeographic patterns of mtDNA reflecting the colonization of the Canary Islands , 1999, Annals of human genetics.

[66]  H. Pfitzinger,et al.  Reproducibility of mtDNA analysis between laboratories: a report of the European DNA Profiling Group (EDNAP). , 1998, Forensic science international.

[67]  K. Okuizumi,et al.  mtDNA Polymorphisms in Japanese Sporadic Alzheimer’s Disease , 1998, Neurobiology of Aging.

[68]  S. Pollak,et al.  A third hypervariable region in the human mitochondrial D-loop. , 1997, Human genetics.

[69]  G. Bertorelle,et al.  High mitochondrial sequence diversity in linguistic isolates of the Alps. , 1996, American journal of human genetics.

[70]  R. Ferrell,et al.  mtDNA variation in the Yanomami: evidence for additional New World founding lineages. , 1996, American journal of human genetics.

[71]  M. Polymeropoulos,et al.  Dinucleotide repeat in the human mitochondrial D-loop. , 1992, Human molecular genetics.

[72]  K. Ohno,et al.  Patients with idiopathic cardiomyopathy belong to the same mitochondrial DNA gene family of Parkinson's disease and mitochondrial encephalomyopathy. , 1991, Biochemical and biophysical research communications.

[73]  K. Ohno,et al.  Distinct clustering of point mutations in mitochondrial DNA among patients with mitochondrial encephalomyopathies and with Parkinson's disease. , 1991, Biochemical and biophysical research communications.

[74]  E. Hagelberg,et al.  A concordance of nucleotide substitutions in the first and second hypervariable segments of the human mtDNA control region , 2005, International Journal of Legal Medicine.

[75]  W. Hiddemann,et al.  Use of polymorphisms in the noncoding region of the human mitochondrial genome to identify potential contamination of human leukemia-lymphoma cell lines. , 2004, The hematology journal : the official journal of the European Haematology Association.

[76]  E. Willerslev,et al.  Distribution patterns of postmortem damage in human mitochondrial DNA. , 2003, American journal of human genetics.

[77]  E. Willerslev,et al.  Characterization of genetic miscoding lesions caused by postmortem damage. , 2003, American journal of human genetics.

[78]  M. Holland,et al.  Population data for 101 Austrian Caucasian mitochondrial DNA d-loop sequences: Application of mtDNA sequence analysis to a forensic case , 1998, International Journal of Legal Medicine.

[79]  S. Pollak,et al.  Location and frequency of polymorphic positions in the mtDNA control region of individuals from Germany , 1998, International Journal of Legal Medicine.

[80]  M. Holland,et al.  Mitochondrial DNA extraction and typing from isolated dentin-experimental evaluation in a Korean population , 1998, Zeitschrift für Rechtsmedizin.

[81]  R. Szibor,et al.  Mitochondrial D‐loop 3′ (CA)n repeat polymorphism: Optimization of analysis and population data , 1997, Electrophoresis.

[82]  T. Ozawa,et al.  Automated sequencing of mitochondrial DNA. , 1996, Methods in enzymology.