Isomer Dependence on the Reactivity of Diazenes with Pentaphenylborole.

Reactions of the anti-aromatic pentaphenylborole with diazenes indicate that both the substitution and the isomer influence the reaction outcome. With respect to trans isomers, azobenzene underwent coordination and C-H addition across the diene of the borole, and 2',6'-dimethylazobenzene furnished a fused tricyclic system. Under photolytic conditions, both of the aforementioned diazenes generate the first 1,3,2-diazaborepin heterocycles, rationalized through reactivity with the cis isomers. This notion is corroborated by the reaction of pentaphenylborole with benzo[c]cinnoline, the tethered variant of azobenzene, that only exists as the cis conformer as the corresponding 1,3,2-diazaborepin was produced regardless if the reaction is conducted in the dark or light. The more aromatic pyridazine proved to be less reactive, forming a resilient adduct.

[1]  G. Frenking,et al.  Scope of the Thermal Ring-Expansion Reaction of Boroles with Organoazides. , 2017, Chemistry.

[2]  Yongxin Li,et al.  Diverse Bonding Activations in the Reactivity of a Pentaphenylborole toward Sodium Phosphaethynolate: Heterocycle Synthesis and Mechanistic Studies. , 2017, Inorganic chemistry.

[3]  Caleb D. Martin,et al.  Expedient Synthesis of 1,2-Thiaborines by Means of Sulfur Insertion into Boroles. , 2016, Chemistry.

[4]  C. Xi,et al.  I2-Mediated 2H-indazole synthesis via halogen-bond-assisted benzyl C-H functionalization. , 2016, Organic & biomolecular chemistry.

[5]  B. Caputo,et al.  Reactions of pentaphenylborole with main group hydrides , 2016 .

[6]  T. Lectka,et al.  A C-F Bond Directed Diels-Alder Reaction. , 2016, The Journal of organic chemistry.

[7]  Caleb D. Martin,et al.  Ring expansion reactions of anti-aromatic boroles: a promising synthetic avenue to unsaturated boracycles. , 2016, Chemical communications.

[8]  Robert M. Edkins,et al.  Synthesis and fluxional behaviour of novel chloroborole dimers. , 2016, Chemical communications.

[9]  David J. D. Wilson,et al.  Probing the reactivity of pentaphenylborole with N-H, O-H, P-H, and S-H bonds. , 2016, Dalton transactions.

[10]  Caleb D. Martin,et al.  Oxygen insertion into boroles as a route to 1,2-oxaborines. , 2016, Chemical communications.

[11]  David J. D. Wilson,et al.  Reactivity of a Phosphaalkyne with Pentaarylboroles , 2016 .

[12]  Caleb D. Martin,et al.  Peculiar Reactivity of Isothiocyanates with Pentaphenylborole. , 2016, Inorganic chemistry.

[13]  H. Braunschweig,et al.  Ring Expansions of Boroles with Diazo Compounds: Steric Control of C or N Insertion and Aromatic/Nonaromatic Products. , 2015, Chemistry.

[14]  K. Shuford,et al.  1,2-Phosphaborines: hybrid inorganic/organic P-B analogues of benzene. , 2015, Angewandte Chemie.

[15]  H. Braunschweig,et al.  O,N,B-Containing eight-membered heterocycles by ring expansion of boroles with nitrones. , 2015, Chemical communications.

[16]  David J. D. Wilson,et al.  Reactions of imines, nitriles, and isocyanides with pentaphenylborole: coordination, ring expansion, C-H bond activation, and hydrogen migration reactions. , 2015, Inorganic chemistry.

[17]  H. Braunschweig,et al.  Formation of BN Isosteres of Azo Dyes by Ring Expansion of Boroles with Azides. , 2015, Angewandte Chemie.

[18]  Ivo Krummenacher,et al.  Synthese BN‐isosterer Verbindungen von Azofarbstoffen durch Ringerweiterung von Borolen mit Aziden , 2015 .

[19]  Caleb D. Martin,et al.  Ring expansion reactions of pentaphenylborole with dipolar molecules as a route to seven-membered boron heterocycles. , 2015, Inorganic chemistry.

[20]  G. Erker,et al.  Reactions of Boroles Formed by 1,1-Carboboration , 2015 .

[21]  David J. D. Wilson,et al.  Investigating the ring expansion reaction of pentaphenylborole and an azide. , 2014, Chemical communications.

[22]  H. Braunschweig,et al.  Antiaromaticity to aromaticity: from boroles to 1,2-azaborinines by ring expansion with azides. , 2014, Chemistry.

[23]  G. Erker,et al.  Borole formation by 1,1-carboboration. , 2014, Journal of the American Chemical Society.

[24]  T. Kupfer,et al.  Si–H Bond Activation at the Boron Center of Pentaphenylborole , 2013 .

[25]  T. Kupfer,et al.  Lewis Acid–Base Adducts of 1‐Mesityl‐ and 1‐Chloro‐2,3,4,5‐tetraphenylborole , 2013 .

[26]  W. Piers,et al.  Mechanistic studies on the metal-free activation of dihydrogen by antiaromatic pentarylboroles. , 2013, Journal of the American Chemical Society.

[27]  T. Kupfer,et al.  Synthesis, coordination behavior, and reduction chemistry of cymantrenyl-1,3-bis(2,3,4,5-tetraphenyl)borole. , 2012, Chemistry.

[28]  W. Piers,et al.  Reaction of pentaarylboroles with carbon monoxide: an isolable organoboron carbonyl complex , 2012 .

[29]  S. Burdette,et al.  Photoisomerization in different classes of azobenzene. , 2012, Chemical Society reviews.

[30]  T. Kupfer,et al.  Recent developments in the chemistry of antiaromatic boroles. , 2011, Chemical communications.

[31]  G. Andrew Woolley,et al.  Azobenzene photoswitches for biomolecules. , 2011, Chemical Society reviews.

[32]  H. Braunschweig,et al.  Unwinding Antiaromaticity in 1-Bromo-2,3,4,5-tetraphenylborole , 2011 .

[33]  T. Kupfer,et al.  NHC-stabilized 1-hydro-1H-borole and its nondegenerate sigmatropic isomers. , 2011, Inorganic chemistry.

[34]  B. Engels,et al.  Das Pentaphenylborol-2,6-Lutidin-Addukt: ein System mit ungewöhnlichen thermo- und photochromen Eigenschaften† , 2011 .

[35]  T. Kupfer,et al.  The pentaphenylborole-2,6-lutidine adduct: a system with unusual thermochromic and photochromic properties. , 2011, Angewandte Chemie.

[36]  T. Kupfer,et al.  Chemical reduction and dimerization of 1-chloro-2,3,4,5-tetraphenylborole. , 2010, Chemistry.

[37]  Andreas Steffen,et al.  Dibenzometallacyclopentadienes, boroles and selected transition metal and main group heterocyclopentadienes: Synthesis, catalytic and optical properties , 2010 .

[38]  W. Piers,et al.  Dihydrogen activation by antiaromatic pentaarylboroles. , 2010, Journal of the American Chemical Society.

[39]  R. McDonald,et al.  Divergent Reactivity of Perfluoropentaphenylborole with Alkynes , 2010 .

[40]  Joan Vignolle,et al.  Perfluoropentaphenylborole: a new approach to Lewis acidic, electron-deficient compounds. , 2009, Angewandte Chemie.

[41]  T. D. Tilley,et al.  Perfluorpentaphenylborol als Zugang zu Lewis-sauren Elektronenmangelverbindungen† , 2009 .

[42]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[43]  H. Braunschweig,et al.  Struktureller Nachweis der Antiaromatizität in freien Borolen , 2008 .

[44]  T. Kupfer,et al.  Structural evidence for antiaromaticity in free boroles. , 2008, Angewandte Chemie.

[45]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[46]  Keiichiro Ogawa,et al.  Molecular Motion and Conformational Interconversion of Azobenzenes in Crystals as Studied by X‐ray Diffraction , 1997 .

[47]  A. Hinchliffe,et al.  Relationships between the HOMO energies and pKa values in monocyclic and bicyclic azines , 1995 .

[48]  W. A. Nugent,et al.  Metallacycle Transfer from Zirconium to Main Group Elements: A Versatile Synthesis of Heterocycles , 1994 .

[49]  A. Rheingold,et al.  Bora-aromatic systems. 12. Thermal generation and transformation of the borepin ring system: a paradigm of pericyclic processes , 1990 .

[50]  P. Fagan,et al.  Synthesis of boroles and their use in low-temperature Diels−Alder reactions with unactivated alkenes , 1988 .

[51]  M. Zerner,et al.  Electronic spectra of cis- and trans-azobenzenes: consequences of ortho substitution , 1985 .

[52]  Hermann Rau,et al.  アゾベンゼンの光異性化に関する回転-反転論争 反転の実験的証明 , 1982 .

[53]  J. E. Galle,et al.  Rearrangements of organometallic compounds. XIII. Boraaromatic systems. IV. Synthesis of heptaphenylborepin via the thermal rearrangement of heptaphenyl-7-borabicyclo[2.2.1]heptadiene , 1975 .

[54]  J. Eisch,et al.  Synthesis of pentaphenylborole, a potentially antiaromatic system , 1969 .

[55]  G. Hartley,et al.  The Cis-form of Azobenzene , 1937, Nature.

[56]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.