Face verification with changeable templates

This paper presents a new method for addressing the challenging problem of generating changeable and privacy preserving templates for face based biometric verification systems. The proposed method transforms the extracted face feature vector by a random orthonormal matrix, and the sorted index numbers of the resulting feature vector in the transformed domain is stored as template for verification. A new matching algorithm is introduced for measuring the similarity between the template and the authenticating image. Two different application scenarios, user-independent and user-dependent transformations are discussed. A vector translation technique is introduced to enhance the changeability of the generated templates. Experimental results on a large face data set demonstrate that the proposed method may improve the verification performance, produce strong changeability, and protect the user's privacy.

[1]  B. V. K. Vijaya Kumar,et al.  Cancelable biometric filters for face recognition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[2]  Andrew Beng Jin Teoh,et al.  Biometric hash: high-confidence face recognition , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[3]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Yongjin Wang,et al.  Face Based Biometric Authentication with Changeable and Privacy Preservable Templates , 2007, 2007 Biometrics Symposium.

[5]  A. Martínez,et al.  The AR face databasae , 1998 .

[6]  T.E. Boult,et al.  Cracking Fuzzy Vaults and Biometric Encryption , 2007, 2007 Biometrics Symposium.

[7]  Anil K. Jain,et al.  Biometric cryptosystems: issues and challenges , 2004, Proceedings of the IEEE.

[8]  Andy Adler,et al.  Vulnerabilities in Biometric Encryption Systems , 2005, AVBPA.

[9]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Shaogang Gong,et al.  Audio- and Video-based Biometric Person Authentication , 1997, Lecture Notes in Computer Science.

[11]  Madhu Sudan,et al.  A Fuzzy Vault Scheme , 2006, Des. Codes Cryptogr..

[12]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[13]  Martin Wattenberg,et al.  A fuzzy commitment scheme , 1999, CCS '99.

[14]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[15]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[16]  Jie Wang,et al.  On solving the face recognition problem with one training sample per subject , 2006, Pattern Recognit..

[17]  Nalini K. Ratha,et al.  Biometric perils and patches , 2002, Pattern Recognit..

[18]  Rafail Ostrovsky,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, SIAM J. Comput..