Artificial neural networks with an infinite number of nodes

A new class of Artificial Neural Networks is described incorporating a node density function and functional weights. This network containing an infinite number of nodes, excels in generalizing and possesses a superior extrapolation capability.

[1]  Nikolas P. Galatsanos,et al.  Sparse Bayesian Modeling With Adaptive Kernel Learning , 2009, IEEE Transactions on Neural Networks.

[2]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[3]  Zhe George Zhang,et al.  Forecasting stock indices with back propagation neural network , 2011, Expert Syst. Appl..

[4]  Florian Steinke,et al.  Bayesian Inference and Optimal Design in the Sparse Linear Model , 2007, AISTATS.

[5]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[6]  Isaac E. Lagaris,et al.  Stopping rules for box-constrained stochastic global optimization , 2008, Appl. Math. Comput..

[7]  Kurt Hornik,et al.  The support vector machine under test , 2003, Neurocomputing.

[8]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[9]  . Andersont,et al.  Mathematics of Control , Signals , and Systems , 2017 .

[10]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[11]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[12]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[13]  Jocelyn Sietsma,et al.  Creating artificial neural networks that generalize , 1991, Neural Networks.

[14]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[15]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[16]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[17]  Peter L. Bartlett,et al.  The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights is More Important than the Size of the Network , 1998, IEEE Trans. Inf. Theory.

[18]  Dimitris G. Papageorgiou,et al.  Neural-network methods for boundary value problems with irregular boundaries , 2000, IEEE Trans. Neural Networks Learn. Syst..

[19]  D. Fotiadis,et al.  Artificial neural network methods in quantum mechanics , 1997, quant-ph/9705029.

[20]  J. G. Hayes NAG algorithms for the approximation of functions and data , 1987 .

[21]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[22]  Konstantinos Blekas,et al.  Under Consideration for Publication in Knowledge and Information Systems Sparse Regression Mixture Modeling with the Multi-kernel Relevance Vector Machine , 2022 .

[23]  Dimitrios I. Fotiadis,et al.  Artificial neural networks for solving ordinary and partial differential equations , 1997, IEEE Trans. Neural Networks.