The effect of vinyl esters on the enantioselectivity of the lipase-catalysed transesterification of alcohols

[1]  F. Theil Enhancement of Selectivity and Reactivity of Lipases by Additives , 2000 .

[2]  M. Kawasaki,et al.  Enzymatic resolution of 2-phenyl-1-propanol by enantioselective hydrolysis of its ester having a bulky group in an acyl moiety , 2000 .

[3]  Keiji Hirose,et al.  Improvement of enantioselectivity in kinetic resolution of a primary alcohol through lipase-catalyzed transesterification by using a chiral acyl donor , 2000 .

[4]  So Ha Lee,et al.  Enzyme-catalysed improved resolution of (RS)-4-cyano-4-(3,4-dimethoxyphenyl)-4-isopropyl-1-butanol , 1999 .

[5]  S. Morita,et al.  An efficient synthesis of optically active metabolites of platelet adhesion inhibitor OPC-29030 by lipase-catalyzed enantioselective transesterification , 1999 .

[6]  S. Kawabata,et al.  Lipase-catalyzed transesterification of 2-phenyl-1-propanol with vinyl esters having aromatic ring in acyl moiety , 1999 .

[7]  Kaoru Nakamura,et al.  Lipase-catalyzed enantioselective deacetylation of ortho-substituted phenyl acetates with 1-butanol in organic solvents , 1999 .

[8]  Kaoru Nakamura,et al.  Lipase-catalyzed kinetic resolution of 3-butyn-2-ol , 1998 .

[9]  T. Ema,et al.  Low-temperature method for enhancement of enantioselectivity in the lipase-catalyzed kinetic resolutions of solketal and some chiral alcohols , 1998 .

[10]  F. Fülöp,et al.  Enzymatic resolution of alicyclic 1,3-amino alcohols in organic media , 1998 .

[11]  G. Lin,et al.  Microwave-promoted lipase-catalyzed reactions , 1998 .

[12]  S. Morita,et al.  Synthesis of a key intermediate, (S)-2-[(3-hydroxypropyl)sulfinyl]-1-(o-tolyl)imidazole, for the platelet aggregation inhibitor, OPC-29030 via lipase-catalyzed enantioselective transesterification , 1997 .

[13]  E. P. Serebryakov,et al.  Enantioselectivity of enzymatic acylation of some structurally various racemic alcohols in anhydrous aprotic media , 1997 .

[14]  T. Ema,et al.  Kinetic resolution of racemic 2-substituted 3-cyclopenten-1-ols by lipase-catalyzed transesterifications: A rational strategy to improve enantioselectivity , 1996 .

[15]  Keiji Hirose,et al.  Enantioselective acylation of primary and secondary alcohols catalyzed by lipase QL from Alcaligenes sp.: A predictive active site model for lipase QL to identify which enantiomer of an alcohol reacts faster in this acylation , 1996 .

[16]  T. Ema,et al.  SIGNIFICANT EFFECT OF ACYL GROUPS ON ENANTIOSELECTIVITY IN LIPASE-CATALYZED TRANSESTERIFICATIONS , 1996 .

[17]  V. Gotor,et al.  Double enantioselective enzymic synthesis of carbonates and urethanes , 1995 .

[18]  K. Kövér,et al.  Simple, Safe, Large Scale Synthesis of 5-Arylmethyl-2,2-dimethyl-1,3-dioxane-4,6-diones and 3-Arylpropanoic Acids , 1995 .

[19]  Keiji Hirose,et al.  Lipase-catalyzed enantioselective acylation of alcohols: a predictive active site model for lipase YS to identify which enantiomer of an alcohol reacts faster in this acylation , 1995 .

[20]  Miroslaw Cygler,et al.  A Structural Basis for the Chiral Preferences of Lipases , 1995 .

[21]  A. Klibanov,et al.  The solvent dependence of enzyme specificity. , 1994, Biochimica et biophysica acta.

[22]  E. Santaniello,et al.  An Insight into the Active Site of Pseudomonas Fluorecens (P. cepacia) Lipase to Define the Stereochemical Demand for the Transesterification in Organic Solvents , 1994 .

[23]  K. Achiwa,et al.  Convenient Syntheses of Optically Active β-Lactams by Enzymatic Resolution , 1993 .

[24]  K. Achiwa,et al.  FACILE ENZYMATIC PREPARATION OF ENANTIOMERIC β-LACTAMS , 1992 .

[25]  Shih-Hsiung Wu,et al.  Sequential biocatalytic kinetic resolutions , 1990 .

[26]  Ching-Shih Chen,et al.  General Aspects and Optimization of Enantioselective Biocatalysis in Organic Solvents: The Use of Lipases [New Synthetic Methods (76)] , 1989 .

[27]  A. Tanaka,et al.  Stereoselective esterification of dl-menthol by polyurethane-entrapped lipase in organic solvent , 1985 .

[28]  C. Sih,et al.  Quantitative analyses of biochemical kinetic resolutions of enantiomers , 1982 .

[29]  D. Enders,et al.  Chiral homoenolate equivalents. I. Asymmetric synthesis of β-substituted aldehydes via metalated chiral allylamines , 1980 .

[30]  G. Cernigliaro,et al.  Pheromone synthesis. 4. A synthesis of (.+-.)-methyl n-tetradeca-trans-2,4,5-trienoate, an allenic ester produced by the male dried bean beetle Acanthoscelides obtectus (Say) , 1977 .