Global nickel anomaly links Siberian Traps eruptions and the latest Permian mass extinction

[1]  H. Svensen,et al.  Global temperature response to century-scale degassing from the Siberian Traps Large igneous province , 2017 .

[2]  Hua Zhang,et al.  Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction , 2017 .

[3]  Hua Zhang,et al.  Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China , 2016 .

[4]  G. Shi,et al.  Fluctuations of redox conditions across the Permian–Triassic boundary—New evidence from the GSSP section in Meishan of South China , 2016 .

[5]  S. Lalonde,et al.  The Archean Nickel Famine Revisited. , 2015, Astrobiology.

[6]  B. Beauchamp,et al.  Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction , 2015 .

[7]  E. Boyle,et al.  Methanogenic burst in the end-Permian carbon cycle , 2014, Proceedings of the National Academy of Sciences.

[8]  H. Sanei,et al.  Mercury deposition through the Permo–Triassic Biotic Crisis , 2013 .

[9]  N. Arndt,et al.  Gas emissions due to magma–sediment interactions during flood magmatism at the Siberian Traps: Gas dispersion and environmental consequences , 2012 .

[10]  H. Naraoka,et al.  Late Permian to Early Triassic environmental changes in the Panthalassic Ocean: Record from the seamount-associated deep-marine siliceous rocks, central Japan , 2012 .

[11]  S. Shen,et al.  Climate warming in the latest Permian and the Permian-Triassic mass extinction , 2012 .

[12]  N. Sleep,et al.  Explosive eruption of coal and basalt and the end-Permian mass extinction , 2011, Proceedings of the National Academy of Sciences.

[13]  H. Sanei,et al.  Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction , 2011 .

[14]  L. Kump,et al.  Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction , 2010 .

[15]  C. Korte,et al.  Massive volcanism at the Permian–Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere , 2010 .

[16]  K. Kaiho,et al.  Possible causes for a negative shift in the stable carbon isotope ratio before, during and after the end-Permian mass extinction in Meishan, South China , 2009 .

[17]  J. Fitton,et al.  The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis , 2009 .

[18]  S. Planke,et al.  Siberian gas venting and the end-Permian environmental crisis , 2008 .

[19]  N. Arzani,et al.  Reply to comment on "Mantle plume: the invisible serial killer — Application to the Permian–Triassic boundary mass extinction" , 2008 .

[20]  Z. Ouyang,et al.  Platinum-group elements of the Meishan Permian–Triassic boundary section: Evidence for flood basaltic volcanism , 2007 .

[21]  A. Sandler,et al.  Evidence for a fungal event, methane-hydrate release and soil erosion at the Permian–Triassic boundary in southern Israel , 2006 .

[22]  T. Vennemann,et al.  Carbon isotope excursions and microfacies changes in marine Permian–Triassic boundary sections in Hungary , 2006 .

[23]  R. Huey,et al.  Hypoxia, Global Warming, and Terrestrial Late Permian Extinctions , 2005, Science.

[24]  Kliti Grice,et al.  Photic Zone Euxinia During the Permian-Triassic Superanoxic Event , 2005, Science.

[25]  B. Peucker‐Ehrenbrink,et al.  Geochemistry of the end-Permian extinction event in Austria and Italy: No evidence for an extraterrestrial component , 2004 .

[26]  P. N. Shukla,et al.  Negative δ 13 C excursion and anoxia at the Permo-Triassic boundary in the Tethys Sea , 2002 .

[27]  G. Shi,et al.  End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle , 2001 .

[28]  T. Dolenec,et al.  The Permian–Triassic boundary in Western Slovenia (Idrijca Valley section): magnetostratigraphy, stable isotopes, and elemental variations , 2001 .

[29]  R. Tada,et al.  Confirmation of the Permian/Triassic boundary in deep-sea sedimentary rocks : earliest Triassic conodonts from black carbonaceous claystone of the Ubara section in the Tamba Belt, Southwest Japan , 1999 .

[30]  Isozaki,et al.  Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea , 1997, Science.

[31]  Y. Kakuwa Permian-Triassic mass extinction event recorded in bedded chert sequence in southwest Japan , 1996 .

[32]  J. Morgan,et al.  RE-OS ISOTOPIC EVIDENCE FOR AN ENRICHED-MANTLE SOURCE FOR THE NORIL'SK-TYPE, ORE-BEARING INTRUSIONS, SIBERIA , 1994 .

[33]  B. Boudreau Is burial velocity a master parameter for bioturbation , 1994 .

[34]  A. J. Naldrett,et al.  Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril'sk region, Russia , 1993 .

[35]  P. N. Shukla,et al.  Positive europium anomaly at the Permo‐Triassic Boundary, Spiti, India , 1992 .

[36]  J. Toutain,et al.  Iridium-bearing sublimates at a hot-spot volcano (Piton de la Fournaise, Indian Ocean) , 1989 .

[37]  D. L. Finnegan,et al.  Iridium emissions from Kilauea Volcano , 1986 .

[38]  G. Cumming Synthesis and Conclusions , 2011 .

[39]  J. Pálfy,et al.  Biotic and environmental changes in the Permian-Triassic boundary interval recorded on a western Tethyan ramp in the Bükk Mountains, Hungary , 2007 .

[40]  D. Erwin Extinction: How Life on Earth Nearly Ended 250 Million Years Ago , 2006 .

[41]  M. Rampino,et al.  Abruptness of the end-Permian mass extinction as determined from biostratigraphic and cyclostratigraphic analyses of European western Tethyan sections , 2002 .

[42]  P. N. Shukla,et al.  Chemical signatures of the Permian-Triassic transitional environment in Spiti Valley, India , 2002 .

[43]  W. T. Holser,et al.  The Permian-Triassic of the Gartnerkofel-1 Core (Carnic Alps, Austria): Geochemistry of Common and Trace Elements II-INAA and RNAA , 2022 .

[44]  Peter Schönlaub,et al.  The Permian-Triassic of the Gartnerkofel-1 Core ( Carnic Alps , Austria ) : Synthesis and Conclusions , 2022 .