On the existence of non-special divisors of degree g and g-1 in algebraic function fields over Fq

Abstract We study the existence of non-special divisors of degree g and g - 1 for algebraic function fields of genus g ⩾ 1 defined over a finite field F q . In particular, we prove that there always exists an effective non-special divisor of degree g ⩾ 2 if q ⩾ 3 and that there always exists a non-special divisor of degree g - 1 ⩾ 1 if q ⩾ 4 . We use our results to improve upper and upper asymptotic bounds on the bilinear complexity of the multiplication in any extension F q n of F q , when q = 2 r ⩾ 16 .

[1]  James R. C. Leitzel,et al.  Algebraic function fields with small class number , 1975 .

[2]  Chaoping Xing Asymptotic bounds on frameproof codes , 2002, IEEE Trans. Inf. Theory.

[3]  Clifford S. Queen,et al.  Algebraic function fields of class number one , 1972 .

[4]  M. Tsfasman,et al.  Asymptotic properties of zeta-functions , 1997 .

[5]  Ruud Pellikaan,et al.  On a decoding algorithm for codes on maximal curves , 1989, IEEE Trans. Inf. Theory.

[6]  S. Ballet,et al.  Multiplication algorithm in a finite field and tensor rank of the multiplication , 2004 .

[7]  Stéphane Ballet Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of Fq , 2003 .

[8]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[9]  Gilles Lachaud,et al.  Nombre de points des jacobiennes sur un corps fini , 1990 .

[10]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[11]  R. E. Macrae On unique factorization in certain rings of algebraic functions , 1971 .

[12]  R. Pellikaan,et al.  Weierstrass Semigroups in an Asymptotically Good Tower of Function Fields , 1998 .

[13]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[14]  R. Rolland,et al.  Descent of the Definition Field of a Tower of Function Fields and Applications , 2004, math/0409173.

[15]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[16]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[17]  S. Hansen Rational Points on Curves over Finite Fields , 1995 .