miR-148a-3p and DDX6 functional link promotes survival of myeloid leukemia cells

Key Points • DDX6 is the direct target of tumor suppressor miR-148a-3p in AML.• DDX6 promotes AML development.

[1]  T. Nguyen,et al.  Secondary structure RNA elements control the cleavage activity of DICER , 2022, Nature Communications.

[2]  Hong Zhang,et al.  RNA-binding protein 39: a promising therapeutic target for cancer , 2021, Cell death discovery.

[3]  O. Abdel-Wahab,et al.  Splicing factor mutations in hematologic malignancies. , 2021, Blood.

[4]  Andrew J. Bannister,et al.  Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia , 2021, Nature.

[5]  Fan Yang,et al.  miR-148a-3p suppresses the progression of acute myeloid leukemia via targeting cyclin-dependent kinase 6 (CDK6) , 2021, Bioengineered.

[6]  Fang-peng Ye,et al.  MiR-148a-3p suppresses the progression of gastric cancer cells through targeting ATP6AP2 , 2020 .

[7]  T. Du,et al.  Research Progress of TXNIP as a Tumor Suppressor Gene Participating in the Metabolic Reprogramming and Oxidative Stress of Cancer Cells in Various Cancers , 2020, Frontiers in Oncology.

[8]  T. Nguyen,et al.  Mismatched and wobble base pairs govern primary microRNA processing by human Microprocessor , 2020, Nature Communications.

[9]  R. Cencic,et al.  A comparative study of small molecules targeting eIF4A , 2020, RNA.

[10]  Yusheng Wang,et al.  LncRNA XIST knockdown suppresses the malignancy of human nasopharyngeal carcinoma through XIST/miRNA-148a-3p/ADAM17 pathway in vitro and in vivo. , 2020, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[11]  Gene W. Yeo,et al.  The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis. , 2019, Cell stem cell.

[12]  Xiaowei Wang,et al.  miRDB: an online database for prediction of functional microRNA targets , 2019, Nucleic Acids Res..

[13]  J. Kocerha,et al.  The Potential for microRNA Therapeutics and Clinical Research , 2019, Front. Genet..

[14]  Michael G. Kharas,et al.  The Biology of m6A RNA Methylation in Normal and Malignant Hematopoiesis. , 2018, Cancer discovery.

[15]  Liang Ma,et al.  microRNA‐148a‐3p inhibited the proliferation and epithelial–mesenchymal transition progression of non‐small‐cell lung cancer via modulating Ras/MAPK/Erk signaling , 2018, Journal of cellular physiology.

[16]  Amir Bayat,et al.  MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential , 2018, Journal of cellular physiology.

[17]  T. Nguyen,et al.  Orientation of Human Microprocessor on Primary MicroRNAs. , 2018, Biochemistry.

[18]  Ana Kozomara,et al.  miRBase: from microRNA sequences to function , 2018, Nucleic Acids Res..

[19]  I. MacRae,et al.  Regulation of microRNA function in animals , 2018, Nature Reviews Molecular Cell Biology.

[20]  S. Natsugoe,et al.  Molecular pathogenesis of pancreatic ductal adenocarcinoma: Impact of passenger strand of pre‐miR‐148a on gene regulation , 2018, Cancer science.

[21]  D. Bartel Metazoan MicroRNAs , 2018, Cell.

[22]  W. El-Rifai,et al.  MicroRNA-148a-3p enhances cisplatin cytotoxicity in gastric cancer through mitochondrial fission induction and cyto-protective autophagy suppression. , 2017, Cancer letters.

[23]  P. V. van Diest,et al.  Targeting RNA helicases in cancer: The translation trap. , 2017, Biochimica et biophysica acta. Reviews on cancer.

[24]  Yan Li,et al.  Expression of the miR-148/152 Family in Acute Myeloid Leukemia and its Clinical Significance , 2017, Medical science monitor : international medical journal of experimental and clinical research.

[25]  B. Seliger,et al.  The role of the miR‐148/‐152 family in physiology and disease , 2017, European journal of immunology.

[26]  Ryan M. O’Connell,et al.  MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. , 2017, Blood.

[27]  A. Keller,et al.  MiR-148a impairs Ras/ERK signaling in B lymphocytes by targeting SOS proteins , 2017, Oncotarget.

[28]  F. Slack,et al.  MicroRNA therapeutics: towards a new era for the management of cancer and other diseases , 2017, Nature Reviews Drug Discovery.

[29]  Tao Lang,et al.  MiR-148a participates in the growth of RPMI8226 multiple myeloma cells by regulating CDKN1B. , 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[30]  Xiaomin Zeng,et al.  The Role of Mir-148a in Cancer , 2016, Journal of Cancer.

[31]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[32]  D. Auboeuf,et al.  The multiple functions of RNA helicases as drivers and regulators of gene expression , 2016, Nature Reviews Molecular Cell Biology.

[33]  V. Kim,et al.  Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis , 2016, Proceedings of the National Academy of Sciences.

[34]  A. Sood,et al.  Differentiation therapy for hepatocellular carcinoma: Multifaceted effects of miR‐148a on tumor growth and phenotype and liver fibrosis , 2016, Hepatology.

[35]  Yong Peng,et al.  The role of MicroRNAs in human cancer , 2016, Signal Transduction and Targeted Therapy.

[36]  Gianluca Bontempi,et al.  TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data , 2015, Nucleic acids research.

[37]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[38]  E. Izaurralde,et al.  Towards a molecular understanding of microRNA-mediated gene silencing , 2015, Nature Reviews Genetics.

[39]  L. Cope,et al.  Targeting DDX3 with a small molecule inhibitor for lung cancer therapy , 2015, EMBO molecular medicine.

[40]  M. Gong,et al.  Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma , 2014, Tumor Biology.

[41]  Qiang Chen,et al.  GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer. , 2014, Biochemical and biophysical research communications.

[42]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[43]  E. Izaurralde,et al.  A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. , 2014, Molecular cell.

[44]  Anders Krogh,et al.  Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients. , 2014, Blood.

[45]  Stefan L Ameres,et al.  Diversifying microRNA sequence and function , 2013, Nature Reviews Molecular Cell Biology.

[46]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[47]  Qing Xu,et al.  A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. , 2013, Journal of molecular cell biology.

[48]  J. Bernhagen,et al.  Identification of DEAD-box RNA Helicase 6 (DDX6) as a Cellular Modulator of Vascular Endothelial Growth Factor Expression under Hypoxia* , 2013, The Journal of Biological Chemistry.

[49]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[50]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[51]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[52]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[53]  S. Shurtleff,et al.  Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[54]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[55]  M. Carroll Taking aim at protein translation in AML. , 2009, Blood.

[56]  Y. Tomari,et al.  Argonaute-mediated translational repression (and activation) , 2009, Fly.

[57]  P. Gao,et al.  Knockdown of RCK/p54 expression by RNAi inhibits proliferation of human colorectal cancer cells in vitro and in vivo , 2008, Cancer biology & therapy.

[58]  Y. Akao,et al.  Structural insight of human DEAD‐box protein rck/p54 into its substrate recognition with conformational changes , 2006, Genes to cells : devoted to molecular & cellular mechanisms.

[59]  K. Livak,et al.  Real-time quantification of microRNAs by stem–loop RT–PCR , 2005, Nucleic acids research.

[60]  Roy Parker,et al.  General Translational Repression by Activators of mRNA Decapping , 2005, Cell.

[61]  Y. Akao,et al.  Co-overexpression of DEAD box protein rck/p54 and c-myc protein in human colorectal adenomas and the relevance of their expression in cultured cell lines. , 2001, Carcinogenesis.

[62]  Y. Akao,et al.  Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours , 1999, British Journal of Cancer.

[63]  Y. Akao,et al.  Growth inhibition by overexpression of human DEAD box protein rck/p54 in cells of a guinea pig cell line , 1998, FEBS letters.

[64]  Y. Akao,et al.  The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues. , 1995, Cancer Research.

[65]  J. Yunis,et al.  Cloning, expression and localization of an RNA helicase gene from a human lymphoid cell line with chromosomal breakpoint 11q23.3. , 1992, Nucleic acids research.

[66]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[67]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .