Network Navigation: Theory and Interpretation

Real-time and reliable location information of mobile nodes is a key enabler for many emerging wireless network applications. Such information can be obtained via network navigation, a new paradigm in which nodes exploit both spatial and temporal cooperation to infer their positions. In this paper, we establish a theoretical foundation for network navigation and determine the fundamental limits of navigation accuracy using equivalent Fisher information analysis. We then introduce the notion of carry-over information and provide a geometrical interpretation for the evolution of navigation information. Our framework unifies the navigation information obtained from spatial and temporal cooperation, leading to a deep understanding of information evolution and cooperation benefits in navigation networks.

[1]  Eric Foxlin,et al.  Pedestrian tracking with shoe-mounted inertial sensors , 2005, IEEE Computer Graphics and Applications.

[2]  Soummya Kar,et al.  Distributed Sensor Localization in Random Environments Using Minimal Number of Anchor Nodes , 2008, IEEE Transactions on Signal Processing.

[3]  Xuemin Shen,et al.  Mobile Location Estimation in CDMA Cellular Networks by Using Fuzzy Logic , 2002, Wirel. Pers. Commun..

[4]  R.L. Moses,et al.  Locating the nodes: cooperative localization in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Manav R. Bhatnagar,et al.  Cooperative Communications over Flat Fading Channels with Carrier Offsets: A Double-Differential Modulation Approach , 2008, EURASIP J. Adv. Signal Process..

[7]  José M. F. Moura,et al.  Distributing the Kalman Filter for Large-Scale Systems , 2007, IEEE Transactions on Signal Processing.

[8]  Moe Z. Win,et al.  Network Experimentation for Cooperative Localization , 2012, IEEE Journal on Selected Areas in Communications.

[9]  Moe Z. Win,et al.  Network localization and navigation via cooperation , 2011, IEEE Communications Magazine.

[10]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[11]  Laurence Mailaender,et al.  On the Geolocation Bounds for Round-Trip Time-of-Arrival and All Non-Line-of-Sight Channels , 2008, EURASIP J. Adv. Signal Process..

[12]  Dario Pompili,et al.  Underwater acoustic sensor networks: research challenges , 2005, Ad Hoc Networks.

[13]  H. Vincent Poor,et al.  An introduction to signal detection and estimation (2nd ed.) , 1994 .

[14]  Moe Z. Win,et al.  Position Error Bound for UWB Localization in Dense Cluttered Environments , 2006, 2006 IEEE International Conference on Communications.

[15]  Ian Oppermann,et al.  GML ToA Estimation Based on Low Complexity UWB Energy Detection , 2006, 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications.

[16]  Moe Z. Win,et al.  Fundamental Limits of Wideband Localization— Part I: A General Framework , 2010, IEEE Transactions on Information Theory.

[17]  Panganamala Ramana Kumar,et al.  Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks, and Computation , 2009, Proceedings of the IEEE.

[18]  Jian Li,et al.  Cooperative Positioning in Underwater Sensor Networks , 2010, IEEE Transactions on Signal Processing.

[19]  Andrea Conti,et al.  Mathematical Evaluation of Environmental Monitoring Estimation Error through Energy-Efficient Wireless Sensor Networks , 2007, IEEE Transactions on Mobile Computing.

[20]  Ji Luo,et al.  Relative Distance Based Localization for Mobile Sensor Networks , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[21]  A.H. Sayed,et al.  Network-based wireless location: challenges faced in developing techniques for accurate wireless location information , 2005, IEEE Signal Processing Magazine.

[22]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[23]  Panganamala Ramana Kumar,et al.  Tracking Objects with Networked Scattered Directional Sensors , 2008, EURASIP J. Adv. Signal Process..

[24]  Gordon L. Stüber,et al.  Overview of radiolocation in CDMA cellular systems , 1998, IEEE Commun. Mag..

[25]  James J. Spilker,et al.  GPS Signal Structure and Performance Characteristics , 1978 .

[26]  Aggelos K. Katsaggelos,et al.  Joint Video Summarization and Transmission Adaptation for Energy-Efficient Wireless Video Streaming , 2008, EURASIP J. Adv. Signal Process..

[27]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[28]  Mischa Dohler,et al.  Cooperative Communications: Hardware, Channel and PHY , 2010 .

[29]  Moe Z. Win,et al.  Information Coupling in Cooperative Localization , 2011, IEEE Communications Letters.

[30]  Moe Z. Win,et al.  Cooperative Localization in Wireless Networks , 2009, Proceedings of the IEEE.

[31]  Chris Savarese LOCATIONING IN DISTRIBUTED AD-HOC WIRELESS SENSOR NETWORKS , 2001 .

[32]  Zhu Han,et al.  Asymptotic Analysis of Large Cooperative Relay Networks Using Random Matrix Theory , 2008, EURASIP J. Adv. Signal Process..

[33]  Moe Z. Win,et al.  Fundamental Limits of Wideband Localization— Part II: Cooperative Networks , 2010, IEEE Transactions on Information Theory.

[34]  Jun Cai,et al.  Mobile location estimation for DS-CDMA systems using self-organizing maps , 2007, Wirel. Commun. Mob. Comput..

[35]  Santiago Mazuelas,et al.  Topology Assessment Provided by Weighted Barycentric Parameters in Harsh Environment Wireless Location Systems , 2010, IEEE Transactions on Signal Processing.

[36]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[37]  Hai Quang Dam,et al.  Deleted DOI: Postfiltering Using Multichannel Spectral Estimation in Multispeaker Environments , 2008 .

[38]  Jan M. Rabaey,et al.  Location in distributed ad-hoc wireless sensor networks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[39]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[40]  Soummya Kar,et al.  DILAND: An Algorithm for Distributed Sensor Localization With Noisy Distance Measurements , 2009, IEEE Transactions on Signal Processing.

[41]  Juha-Pekka Makela,et al.  Indoor geolocation science and technology , 2002, IEEE Commun. Mag..

[42]  Mischa Dohler,et al.  Cooperative Communications : Hardware , Channel & PHY , 2009 .

[43]  Moe Z. Win,et al.  Ranging With Ultrawide Bandwidth Signals in Multipath Environments , 2009, Proceedings of the IEEE.

[44]  Anant Sahai,et al.  Cramér-Rao-Type Bounds for Localization , 2006, EURASIP J. Adv. Signal Process..