GroEL dependency affects codon usage—support for a critical role of misfolding in gene evolution

[1]  Tong Zhou,et al.  Translationally optimal codons associate with structurally sensitive sites in proteins. , 2009, Molecular biology and evolution.

[2]  John Moult,et al.  Stochastic noise in splicing machinery , 2009 .

[3]  Zhaolei Zhang,et al.  An atlas of chaperone–protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell , 2009, Molecular systems biology.

[4]  Dan S. Tawfik,et al.  Chaperonin overexpression promotes genetic variation and enzyme evolution , 2009, Nature.

[5]  F. Hartl,et al.  Converging concepts of protein folding in vitro and in vivo , 2009, Nature Structural &Molecular Biology.

[6]  L. Hurst,et al.  Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay , 2009, BMC Biology.

[7]  L. Hurst Evolutionary genomics and the reach of selection , 2009, Journal of biology.

[8]  Hani S. Zaher,et al.  Fidelity at the Molecular Level: Lessons from Protein Synthesis , 2009, Cell.

[9]  E. Rocha,et al.  The temporal dynamics of slightly deleterious mutations in Escherichia coli and Shigella spp. , 2009, Molecular biology and evolution.

[10]  Reinhard Wolf,et al.  Coding-Sequence Determinants of Gene Expression in Escherichia coli , 2009 .

[11]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[12]  Claus O. Wilke,et al.  Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution , 2008, Cell.

[13]  Renée L. Brost,et al.  The interaction network of the chaperonin CCT , 2008, The EMBO journal.

[14]  C. Pál,et al.  Integration of horizontally transferred genes into regulatory interaction networks takes many million years. , 2008, Molecular biology and evolution.

[15]  H. Rye,et al.  GroEL stimulates protein folding through forced unfolding , 2008, Nature Structural &Molecular Biology.

[16]  O. Jaillon,et al.  Translational control of intron splicing in eukaryotes , 2008, Nature.

[17]  Orly Noivirt-Brik,et al.  Low folding propensity and high translation efficiency distinguish in vivo substrates of GroEL from other Escherichia coli proteins , 2007, Bioinform..

[18]  Martin A. Nowak,et al.  Phenotypic Mutation Rates and the Abundance of Abnormal Proteins in Yeast , 2007, PLoS Comput. Biol..

[19]  S. Freeland,et al.  The effects of differential gene expression on coding sequence features: analysis by one-way ANOVA. , 2007, Biochemical and biophysical research communications.

[20]  A. Eyre-Walker,et al.  Synonymous codon usage in Escherichia coli: selection for translational accuracy. , 2006, Molecular biology and evolution.

[21]  J. Galagan,et al.  Positive selection for unpreferred codon usage in eukaryotic genomes , 2007, BMC Evolutionary Biology.

[22]  John R Yates,et al.  Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL , 2006, Proceedings of the National Academy of Sciences.

[23]  Søren Vang,et al.  Protein misfolding and human disease. , 2006, Annual review of genomics and human genetics.

[24]  Joaquín Dopazo,et al.  BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments , 2006, Nucleic Acids Res..

[25]  D. J. Naylor,et al.  Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli , 2005, Cell.

[26]  Andrés Moya,et al.  Genomic determinants of protein folding thermodynamics in prokaryotic organisms. , 2004, Journal of molecular biology.

[27]  Jason C. Young,et al.  Pathways of chaperone-mediated protein folding in the cytosol , 2004, Nature Reviews Molecular Cell Biology.

[28]  P. Reeves,et al.  Molecular Evolutionary Relationships of Enteroinvasive Escherichia coli and Shigella spp , 2004, Infection and Immunity.

[29]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[30]  A. Moya,et al.  Mutational and selective pressures on codon and amino acid usage in Buchnera, endosymbiotic bacteria of aphids. , 2003, Genome research.

[31]  Lorenz Wernisch,et al.  Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. , 2003, Nucleic Acids Research.

[32]  E. Rocha DNA repeats lead to the accelerated loss of gene order in bacteria. , 2003, Trends in genetics : TIG.

[33]  Ulrike M K Böttcher,et al.  TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes , 2003, The EMBO journal.

[34]  Andrej Shevchenko,et al.  The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. , 2003, Molecular cell.

[35]  Daniel Korenblum,et al.  Tracing Specific Synonymous Codon–Secondary Structure Correlations Through Evolution , 2003, Journal of Molecular Evolution.

[36]  Alfonso Valencia,et al.  Reductive genome evolution in Buchnera aphidicola , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Andrés Moya,et al.  Comparative Molecular Evolution of Primary (Buchnera) and Secondary Symbionts of Aphids Based on Two Protein-Coding Genes , 2002, Journal of Molecular Evolution.

[38]  Arkady B. Khodursky,et al.  Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Moya,et al.  The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. , 2002, Molecular biology and evolution.

[40]  Santiago F. Elena,et al.  Endosymbiotic bacteria: GroEL buffers against deleterious mutations , 2002, Nature.

[41]  Ricardo Ehrlich,et al.  Silent mutations affect in vivo protein folding in Escherichia coli. , 2002, Biochemical and biophysical research communications.

[42]  Laurence D. Hurst,et al.  The evolution of isochores , 2001, Nature Reviews Genetics.

[43]  L. Maquat,et al.  Quality Control of mRNA Function , 2001, Cell.

[44]  L. Duret,et al.  tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. , 2000, Trends in genetics : TIG.

[45]  F. Hartl,et al.  Protein folding: Versatility of the cytosolic chaperonin TRiC/CCT , 2000, Current Biology.

[46]  S. Gottesman,et al.  Posttranslational quality control: folding, refolding, and degrading proteins. , 1999, Science.

[47]  A. Komar,et al.  Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation , 1999, FEBS letters.

[48]  D A Winkelmann,et al.  Myosin II Folding Is Mediated by a Molecular Chaperonin* , 1999, The Journal of Biological Chemistry.

[49]  A. Horwich,et al.  Global unfolding of a substrate protein by the Hsp100 chaperone ClpA , 1999, Nature.

[50]  N. Moran,et al.  Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes. , 1999, Molecular biology and evolution.

[51]  M. Orešič,et al.  Specific correlations between relative synonymous codon usage and protein secondary structure. , 1998, Journal of molecular biology.

[52]  A. Horwich,et al.  Structure and function in GroEL-mediated protein folding. , 1998, Annual review of biochemistry.

[53]  G. Farr,et al.  Newly-synthesized beta-tubulin demonstrates domain-specific interactions with the cytosolic chaperonin. , 1996, Biochemistry.

[54]  P Argos,et al.  Ribosome‐mediated translational pause and protein domain organization , 1996, Protein science : a publication of the Protein Society.

[55]  A. Eyre-Walker,et al.  Synonymous codon bias is related to gene length in Escherichia coli: selection for translational accuracy? , 1996, Molecular biology and evolution.

[56]  N. Moran Accelerated evolution and Muller's rachet in endosymbiotic bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[58]  D. Drubin,et al.  A yeast TCP-1-like protein is required for actin function in vivo. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[59]  H. Akashi Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. , 1994, Genetics.

[60]  C. Kurland,et al.  Codon preferences in free-living microorganisms. , 1990, Microbiological reviews.

[61]  T. Ikemura Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. , 1981, Journal of molecular biology.