Pathological insights from amyotrophic lateral sclerosis animal models: comparisons, limitations, and challenges

[1]  Shihua Li,et al.  New pathogenic insights from large animal models of neurodegenerative diseases , 2022, Protein & Cell.

[2]  Shihua Li,et al.  SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain , 2021, Autophagy.

[3]  Katharina M. Hembach,et al.  Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects , 2021, Nature Communications.

[4]  G. Cestra,et al.  Chemical chaperones targeted to the endoplasmic reticulum (ER) and lysosome prevented neurodegeneration in a C9orf72 repeat expansion drosophila amyotrophic lateral sclerosis (ALS) model , 2021, Pharmacological Reports.

[5]  F. Hirth,et al.  Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation , 2021, Nature Reviews Neuroscience.

[6]  T. Jenkins,et al.  Value of systematic genetic screening of patients with amyotrophic lateral sclerosis , 2021, Journal of Neurology, Neurosurgery, and Psychiatry.

[7]  J. Kocsis,et al.  Intravenous infusion of mesenchymal stem cells delays disease progression in the SOD1G93A transgenic amyotrophic lateral sclerosis rat model , 2021, Brain Research.

[8]  Fenghua Hu,et al.  Cellular and physiological functions of C9ORF72 and implications for ALS/FTD , 2020, Journal of neurochemistry.

[9]  P. van Damme,et al.  TDP-43 proteinopathies: a new wave of neurodegenerative diseases , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[10]  M. Zhen,et al.  Overexpression of an ALS-associated FUS mutation in C. elegans disrupts NMJ morphology and leads to defective neuromuscular transmission , 2020, Biology Open.

[11]  Aleksey Shatunov,et al.  The genetic architecture of ALS , 2020, Neurobiology of Disease.

[12]  S. A. Patten,et al.  Modelling C9orf72-Related Amyotrophic Lateral Sclerosis in Zebrafish , 2020, Biomedicines.

[13]  K. Eggan,et al.  Absence of Survival and Motor Deficits in 500 Repeat C9ORF72 BAC Mice , 2020, Neuron.

[14]  Lianfeng Zhang,et al.  Knock in of a hexanucleotide repeat expansion in the C9orf72 gene induces ALS in rats , 2020, Animal models and experimental medicine.

[15]  Li Zhang,et al.  Ablation of C9orf72 together with excitotoxicity induces ALS in rats , 2020, The FEBS journal.

[16]  Kecheng Zhang,et al.  TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS , 2020, bioRxiv.

[17]  V. Buée-Scherrer,et al.  Freezing activity brief data from a new FUS mutant zebrafish line , 2020, Data in brief.

[18]  Anna L. Brown,et al.  FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention , 2020, Nucleic acids research.

[19]  J. Hurley,et al.  Structure of the C9orf72 Arf GAP complex haploinsufficient in ALS and FTD , 2020, Nature.

[20]  V. Buée-Scherrer,et al.  Functional characterization of a FUS mutant zebrafish line as a novel genetic model for ALS , 2020, Neurobiology of Disease.

[21]  Grace Boekhoff-Falk,et al.  Modeling Neurodegenerative Disorders in Drosophila melanogaster , 2020, International journal of molecular sciences.

[22]  Yuning Hong,et al.  The Redox Activity of Protein Disulfide Isomerase Inhibits ALS Phenotypes in Cellular and Zebrafish Models , 2020, iScience.

[23]  Zhonghan Li,et al.  Cryo-EM structure of C9ORF72–SMCR8–WDR41 reveals the role as a GAP for Rab8a and Rab11a , 2020, Proceedings of the National Academy of Sciences.

[24]  L. Petrucelli,et al.  Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72 , 2020, Nature Neuroscience.

[25]  M. Freire,et al.  IN VITRO AND IN VIVO MODELS OF AMYOTROPHIC LATERAL SCLEROSIS: AN UPDATED OVERVIEW , 2020, Brain Research Bulletin.

[26]  M. Kango-Singh,et al.  Inactivation of Hippo and cJun-N-terminal Kinase (JNK) signaling mitigate FUS mediated neurodegeneration in vivo , 2020, Neurobiology of Disease.

[27]  W. Rossoll,et al.  Traffic jam at the nuclear pore: All roads lead to nucleocytoplasmic transport defects in ALS/FTD , 2020, Neurobiology of Disease.

[28]  Shang Gao,et al.  Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS , 2019, Nature Medicine.

[29]  Lindsey D. Goodman,et al.  New Roles for Canonical Transcription Factors in Repeat Expansion Diseases. , 2019, Trends in genetics : TIG.

[30]  Eric N. Anderson,et al.  Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization , 2019, Nature Communications.

[31]  L. Petrucelli,et al.  eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS , 2019, Acta Neuropathologica Communications.

[32]  L. Petrucelli,et al.  Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. , 2019, Nature Neuroscience.

[33]  H. Yoshida,et al.  Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders , 2019, Brain Research.

[34]  A. Rainoldi,et al.  Motor neuron degeneration, severe myopathy and TDP-43 increase in a transgenic pig model of SOD1-linked familiar ALS , 2019, Neurobiology of Disease.

[35]  Ting Zhao,et al.  Caspase-4 mediates cytoplasmic accumulation of TDP-43 in the primate brains , 2019, Acta Neuropathologica.

[36]  L. Petrucelli,et al.  Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy , 2019, Molecular Neurodegeneration.

[37]  Gene W. Yeo,et al.  Overriding FUS autoregulation in mice triggers gain-of-toxic dysfunctions in RNA metabolism and autophagy-lysosome axis , 2019, eLife.

[38]  Yaoyang Zhang,et al.  PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins , 2019, Cell Research.

[39]  P. Walczak,et al.  The Role of Glia in Canine Degenerative Myelopathy: Relevance to Human Amyotrophic Lateral Sclerosis , 2019, Molecular Neurobiology.

[40]  Daniela C. Zarnescu,et al.  Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS , 2019, bioRxiv.

[41]  Daniel J. Miller,et al.  Spatiotemporal transcriptomic divergence across human and macaque brain development , 2018, Science.

[42]  A. Higginbottom,et al.  Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features , 2018, Acta Neuropathologica Communications.

[43]  Robert H. Brown,et al.  Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques , 2018, Science Translational Medicine.

[44]  A. Hart,et al.  Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration , 2018, PLoS genetics.

[45]  H. Yoshida,et al.  Hippo, Drosophila MST, is a novel modifier of motor neuron degeneration induced by knockdown of Caz, Drosophila FUS , 2018, Experimental cell research.

[46]  P. Andersen,et al.  Misfolded SOD1 pathology in sporadic Amyotrophic Lateral Sclerosis , 2018, Scientific Reports.

[47]  Jian-Chiuan Li,et al.  Distinct multilevel misregulations of Parkin and PINK1 revealed in cell and animal models of TDP-43 proteinopathy , 2018, Cell Death & Disease.

[48]  Juan M. Vaquerizas,et al.  Xrp1 genetically interacts with the ALS-associated FUS orthologue caz and mediates its toxicity , 2018, The Journal of cell biology.

[49]  W. Robberecht,et al.  FUS-induced neurotoxicity in Drosophila is prevented by downregulating nucleocytoplasmic transport proteins , 2018, Human molecular genetics.

[50]  C. Soto,et al.  Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases , 2018, Nature Neuroscience.

[51]  C. Lutz Mouse models of ALS: Past, present and future , 2018, Brain Research.

[52]  H. Horvitz,et al.  A C9orf72 ALS/FTD Ortholog Acts in Endolysosomal Degradation and Lysosomal Homeostasis , 2018, Current Biology.

[53]  G. Johnson,et al.  Arginase-1 expressing microglia in close proximity to motor neurons were increased early in disease progression in canine degenerative myelopathy, a model of amyotrophic lateral sclerosis , 2018, Molecular and Cellular Neuroscience.

[54]  Michael J. Cowan,et al.  Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons , 2018, Nature Medicine.

[55]  A. Hyman,et al.  Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation , 2018, Nature Communications.

[56]  Anlin Peng,et al.  Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. , 2018, European journal of pharmacology.

[57]  L. Petrucelli,et al.  A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism , 2018, Acta Neuropathologica.

[58]  M. Matsuzaki,et al.  Silencing of FUS in the common marmoset (Callithrix jacchus) brain via stereotaxic injection of an adeno-associated virus encoding shRNA , 2017, Neuroscience Research.

[59]  Gene W. Yeo,et al.  Genetic mutations in RNA-binding proteins and their roles in ALS , 2017, Human Genetics.

[60]  Chris W. Lee,et al.  Mouse Models of C9orf72 Hexanucleotide Repeat Expansion in Amyotrophic Lateral Sclerosis/ Frontotemporal Dementia , 2017, Front. Cell. Neurosci..

[61]  A. Higginbottom,et al.  Viral delivery of C9orf72 hexanucleotide repeat expansions in mice leads to repeat-length-dependent neuropathology and behavioural deficits , 2017, Disease Models & Mechanisms.

[62]  A. Whitworth,et al.  Enhancing Mitofusin/Marf ameliorates neuromuscular dysfunction in Drosophila models of TDP-43 proteinopathies , 2017, Neurobiology of Aging.

[63]  J. Cleary,et al.  New developments in RAN translation: insights from multiple diseases. , 2017, Current opinion in genetics & development.

[64]  Y. Chern,et al.  Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis , 2017, Front. Cell. Neurosci..

[65]  V. Skvortsova,et al.  The FUS protein: Physiological functions and a role in amyotrophic lateral sclerosis , 2017, Molecular Biology.

[66]  E. Hedlund,et al.  Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis , 2017, Acta Neuropathologica.

[67]  D. Pizzo,et al.  Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis , 2017, Acta Neuropathologica.

[68]  S. P. Andrews,et al.  Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities , 2017, Neuron.

[69]  Ying Sun,et al.  Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis , 2017, Acta Neuropathologica.

[70]  Zhi-rui Zhou,et al.  Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis , 2017, Journal of Neurology, Neurosurgery & Psychiatry.

[71]  P. Vourc'h,et al.  A novel mutation of the C-terminal amino acid of FUS (Y526C) strengthens FUS gene as the most frequent genetic factor in aggressive juvenile ALS , 2017, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[72]  Wenzhang Wang,et al.  Motor-Coordinative and Cognitive Dysfunction Caused by Mutant TDP-43 Could Be Reversed by Inhibiting Its Mitochondrial Localization. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[73]  L. M. Igaz,et al.  Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice , 2016, Front. Aging Neurosci..

[74]  R. Reenan,et al.  Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components , 2016, Genetics.

[75]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[76]  W. Mayhan,et al.  Severe respiratory changes at end stage in a FUS-induced disease state in adult rats , 2016, BMC Neuroscience.

[77]  K. Talbot,et al.  Pathogenesis of FUS-associated ALS and FTD: insights from rodent models , 2016, Acta neuropathologica communications.

[78]  Stanley N Cohen,et al.  Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts , 2016, Science.

[79]  E. Buratti,et al.  Physiological functions and pathobiology of TDP‐43 and FUS/TLS proteins , 2016, Journal of neurochemistry.

[80]  P. Drapeau,et al.  Simple animal models for amyotrophic lateral sclerosis drug discovery , 2016, Expert opinion on drug discovery.

[81]  F. Baralle,et al.  A novel Drosophila model of TDP-43 proteinopathies: N-terminal sequences combined with the Q/N domain induce protein functional loss and locomotion defects , 2016, Disease Models & Mechanisms.

[82]  D. Borchelt,et al.  C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD , 2016, Neuron.

[83]  C. Heyser,et al.  Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs , 2016, Neuron.

[84]  A. Whitworth,et al.  Axonal transport defects are a common phenotype in Drosophila models of ALS , 2016, Human molecular genetics.

[85]  Xiang-Dong Fu,et al.  Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss , 2016, The EMBO journal.

[86]  B. Chen,et al.  Homology Directed Knockin of Point Mutations in the Zebrafish tardbp and fus Genes in ALS Using the CRISPR/Cas9 System , 2016, PloS one.

[87]  J. Tapia,et al.  ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function , 2016, Nature Communications.

[88]  Hong-Fu Li,et al.  Genotype-phenotype correlations of amyotrophic lateral sclerosis , 2016, Translational Neurodegeneration.

[89]  S. Golaszewski,et al.  Canine degenerative myelopathy: a model of human amyotrophic lateral sclerosis. , 2016, Zoology.

[90]  A. Alstrup,et al.  Genetically modified pig models for neurodegenerative disorders , 2016, The Journal of pathology.

[91]  Robert H. Brown,et al.  Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult SOD1G93A Mice and Nonhuman Primates , 2015, Human gene therapy.

[92]  L. Petrucelli,et al.  C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD , 2015, Neuron.

[93]  H. Horvitz,et al.  Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice , 2015, Neuron.

[94]  Chuan-en Wang,et al.  Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain , 2015, Molecular Neurodegeneration.

[95]  Sean J. Miller,et al.  The C9orf72 repeat expansion disrupts nucleocytoplasmic transport , 2015, Nature.

[96]  Bruce L. Miller,et al.  GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport , 2015, Nature.

[97]  G. Comi,et al.  SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis , 2015, Front. Cell. Neurosci..

[98]  C. Bond,et al.  Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles , 2015, The Journal of cell biology.

[99]  D. Minciacchi,et al.  Increased anxiety‐like behavior and selective learning impairments are concomitant to loss of hippocampal interneurons in the presymptomatic SOD1(G93A) ALS mouse model , 2015, The Journal of comparative neurology.

[100]  Y. Ando,et al.  Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis , 2015, Translational Neurodegeneration.

[101]  Raymond D. Schellevis,et al.  C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits , 2015, Annals of neurology.

[102]  R. Eiges,et al.  Modeling diseases of noncoding unstable repeat expansions using mutant pluripotent stem cells. , 2015, World journal of stem cells.

[103]  T. Hortobágyi,et al.  Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with pathological features of ALS , 2015, Acta neuropathologica communications.

[104]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits , 2015, Science.

[105]  J. Rothstein,et al.  Rodent Models of Amyotrophic Lateral Sclerosis , 2015, Current protocols in pharmacology.

[106]  Jean-Michel Verdier,et al.  Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases , 2015, Front. Neurosci..

[107]  Tu Vinh Luong,et al.  A novel SOD1-ALS mutation separates central and peripheral effects of mutant SOD1 toxicity , 2014, Human molecular genetics.

[108]  G. Rouleau,et al.  Dissection of genetic factors associated with amyotrophic lateral sclerosis , 2014, Experimental Neurology.

[109]  Daniela C. Zarnescu,et al.  Futsch/MAP1B mRNA Is a Translational Target of TDP-43 and Is Neuroprotective in a Drosophila Model of Amyotrophic Lateral Sclerosis , 2014, The Journal of Neuroscience.

[110]  O. Hendrich,et al.  C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins , 2014, Science.

[111]  A. Muotri,et al.  Pig models of neurodegenerative disorders: Utilization in cell replacement‐based preclinical safety and efficacy studies , 2014, The Journal of comparative neurology.

[112]  P. Drapeau,et al.  Fishing for causes and cures of motor neuron disorders , 2014, Disease Models & Mechanisms.

[113]  H. Morris,et al.  Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion , 2014, Neurobiology of Aging.

[114]  Chuan-en Wang,et al.  TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain. , 2014, Human molecular genetics.

[115]  Li-Huei Tsai,et al.  ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. , 2014, The Journal of clinical investigation.

[116]  Chuan-en Wang,et al.  Species-dependent neuropathology in transgenic SOD1 pigs , 2014, Cell Research.

[117]  L. Petrucelli,et al.  Mechanisms of toxicity in C9FTLD/ALS , 2014, Acta Neuropathologica.

[118]  G. Rouleau,et al.  Deletion of C9ORF72 Results in Motor Neuron Degeneration and Stress Sensitivity in C. elegans , 2013, PloS one.

[119]  P. Drapeau,et al.  Loss and gain of FUS function impair neuromuscular synaptic transmission in a genetic model of ALS. , 2013, Human molecular genetics.

[120]  C. Bendotti,et al.  Modeling Amyotrophic Lateral Sclerosis in hSOD1G93A Transgenic Swine , 2013, Neurodegenerative Diseases.

[121]  Kevin F. Bieniek,et al.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.

[122]  K. Tsai,et al.  Disease Animal Models of TDP-43 Proteinopathy and Their Pre-Clinical Applications , 2013, International journal of molecular sciences.

[123]  G. Hicks,et al.  ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation , 2013, PLoS genetics.

[124]  A. Hilliker,et al.  Expression of zinc-deficient human superoxide dismutase in Drosophila neurons produces a locomotor defect linked to mitochondrial dysfunction , 2013, Neurobiology of Aging.

[125]  T. Miller,et al.  Canine degenerative myelopathy: Biochemical characterization of superoxide dismutase 1 in the first naturally occurring non-human amyotrophic lateral sclerosis model , 2013, Experimental Neurology.

[126]  G. Rouleau,et al.  TARDBP and FUS Mutations Associated with Amyotrophic Lateral Sclerosis: Summary and Update , 2013, Human mutation.

[127]  Chadwick M. Hales,et al.  Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration , 2013, Proceedings of the National Academy of Sciences.

[128]  C. van Broeckhoven,et al.  Overexpression of ALS-Associated p.M337V Human TDP-43 in Mice Worsens Disease Features Compared to Wild-type Human TDP-43 Mice , 2013, Molecular Neurobiology.

[129]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[130]  Gene W. Yeo,et al.  ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43 , 2013, Proceedings of the National Academy of Sciences.

[131]  R. Needleman,et al.  Effect of sex on lifespan, disease progression, and the response to methionine sulfoximine in the SOD1 G93A mouse model for ALS. , 2012, Gender medicine.

[132]  T. Hortobágyi,et al.  Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion , 2012, Acta Neuropathologica.

[133]  L. Petrucelli,et al.  TDP-1/TDP-43 Regulates Stress Signaling and Age-Dependent Proteotoxicity in Caenorhabditis elegans , 2012, PLoS genetics.

[134]  T. Tokuda,et al.  Knockdown of the Drosophila Fused in Sarcoma (FUS) Homologue Causes Deficient Locomotive Behavior and Shortening of Motoneuron Terminal Branches , 2012, PloS one.

[135]  Michelle K. Lupton,et al.  The C9ORF72 expansion mutation is a common cause of ALS+/−FTD in Europe and has a single founder , 2012, European Journal of Human Genetics.

[136]  V. Meininger,et al.  Phenotype and genotype analysis in amyotrophic lateral sclerosis with TARDBP gene mutations , 2012, Neurology.

[137]  G. Rouleau,et al.  Mutant TDP-43 and FUS Cause Age-Dependent Paralysis and Neurodegeneration in C. elegans , 2012, PloS one.

[138]  Dean P. Jones,et al.  Absence of SOD1 leads to oxidative stress in peripheral nerve and causes a progressive distal motor axonopathy , 2012, Experimental Neurology.

[139]  J. Kumagai,et al.  Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43 , 2012, Brain : a journal of neurology.

[140]  Jianbin Tong,et al.  Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. , 2012, The Journal of clinical investigation.

[141]  G. Elder,et al.  Modeling human neurodegenerative diseases in transgenic systems , 2011, Human Genetics.

[142]  L. Petrucelli,et al.  Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice , 2011, Molecular Neurodegeneration.

[143]  D. Geschwind,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[144]  N. Shneider,et al.  The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. , 2011, The Journal of clinical investigation.

[145]  T. Kawano,et al.  ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism , 2011, Human molecular genetics.

[146]  J. Julien,et al.  Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. , 2011, Brain : a journal of neurology.

[147]  R. Zeng,et al.  Degenerative myelopathy in a Bernese Mountain Dog with a novel SOD1 missense mutation. , 2011, Journal of veterinary internal medicine.

[148]  M. Mesulam,et al.  Expression of human FUS protein in Drosophila leads to progressive neurodegeneration , 2011, Protein & Cell.

[149]  Ji Han Kim,et al.  A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. , 2011, Human molecular genetics.

[150]  Daniela C. Zarnescu,et al.  Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS. , 2011, Human molecular genetics.

[151]  C. Shen,et al.  Neuronal Function and Dysfunction of Drosophila dTDP , 2011, PloS one.

[152]  E. Brustein,et al.  Zebrafish models for the functional genomics of neurogenetic disorders. , 2011, Biochimica et biophysica acta.

[153]  David Housman,et al.  Huntington's Disease: Can Mice Lead the Way to Treatment? , 2011, Neuron.

[154]  Brian B. Gibbens,et al.  Non-ATG–initiated translation directed by microsatellite expansions , 2010, Proceedings of the National Academy of Sciences.

[155]  Nicole F. Liachko,et al.  Phosphorylation Promotes Neurotoxicity in a Caenorhabditis elegans Model of TDP-43 Proteinopathy , 2010, The Journal of Neuroscience.

[156]  Pamela A McCombe,et al.  Effects of gender in amyotrophic lateral sclerosis. , 2010, Gender medicine.

[157]  J. Kaas,et al.  Connectivity-driven white matter scaling and folding in primate cerebral cortex , 2010, Proceedings of the National Academy of Sciences.

[158]  C. Beattie,et al.  A genetic model of amyotrophic lateral sclerosis in zebrafish displays phenotypic hallmarks of motoneuron disease , 2010, Disease Models & Mechanisms.

[159]  D. Price,et al.  Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice , 2010, Proceedings of the National Academy of Sciences.

[160]  H. Hutter,et al.  Neurotoxic effects of TDP-43 overexpression in C. elegans. , 2010, Human molecular genetics.

[161]  L. Petrucelli,et al.  Wild-Type Human TDP-43 Expression Causes TDP-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice , 2010, The Journal of Neuroscience.

[162]  E. Buratti,et al.  The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation , 2010, RNA biology.

[163]  C. Bendixen,et al.  Advances in porcine genomics and proteomics--a toolbox for developing the pig as a model organism for molecular biomedical research. , 2010, Briefings in functional genomics.

[164]  John Q. Trojanowski,et al.  TAR DNA-binding protein 43 in neurodegenerative disease , 2010, Nature Reviews Neurology.

[165]  G. Schellenberg,et al.  Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis , 2010, Acta Neuropathologica.

[166]  R. Bowser,et al.  Transgenic Rat Model of Neurodegeneration Caused by Mutation in the TDP Gene , 2010, PLoS genetics.

[167]  S. Pereson,et al.  TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration , 2010, Proceedings of the National Academy of Sciences.

[168]  G. Rouleau,et al.  Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. , 2010, Human molecular genetics.

[169]  Jane Y. Wu,et al.  A Drosophila model for TDP-43 proteinopathy , 2010, Proceedings of the National Academy of Sciences.

[170]  S. Jiang,et al.  TDP‐43, a neuro‐pathosignature factor, is essential for early mouse embryogenesis , 2009, Genesis.

[171]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[172]  Jie Shen,et al.  Absence of nigral degeneration in aged parkin/DJ‐1/PINK1 triple knockout mice , 2009, Journal of neurochemistry.

[173]  A. D’Ambrogio,et al.  Depletion of TDP‐43 affects Drosophila motoneurons terminal synapsis and locomotive behavior , 2009, FEBS letters.

[174]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[175]  K. Lindblad-Toh,et al.  Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis , 2009, Proceedings of the National Academy of Sciences.

[176]  Lars Bolund,et al.  Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw , 2009, Transgenic Research.

[177]  D. Hall,et al.  An ALS-Linked Mutant SOD1 Produces a Locomotor Defect Associated with Aggregation and Synaptic Dysfunction When Expressed in Neurons of Caenorhabditis elegans , 2009, PLoS genetics.

[178]  E. Beghi,et al.  Prognostic factors in ALS: A critical review , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[179]  Kexiang Xu,et al.  A Drosophila Model for Amyotrophic Lateral Sclerosis Reveals Motor Neuron Damage by Human SOD1 , 2008, Journal of Biological Chemistry.

[180]  D. Cleveland,et al.  Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria , 2008, Proceedings of the National Academy of Sciences.

[181]  D. Doudet,et al.  Neuromodulation in a minipig MPTP model of Parkinson disease , 2008, British journal of neurosurgery.

[182]  A. K. Hansen,et al.  The use of pigs in neuroscience: Modeling brain disorders , 2007, Neuroscience & Biobehavioral Reviews.

[183]  H. Mitsumoto,et al.  Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial , 2007, The Lancet Neurology.

[184]  P. Carmeliet,et al.  Overexpression of mutant superoxide dismutase 1 causes a motor axonopathy in the zebrafish. , 2007, Human molecular genetics.

[185]  P. Andersen,et al.  Motor Neuron Disease in Mice Expressing the Wild Type-Like D90A Mutant Superoxide Dismutase-1 , 2006, Journal of neuropathology and experimental neurology.

[186]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[187]  Ole Gredal,et al.  Toxicity of Familial ALS-Linked SOD1 Mutants from Selective Recruitment to Spinal Mitochondria , 2004, Neuron.

[188]  Christopher J. Lee,et al.  Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss , 2003, Nature Genetics.

[189]  H. Zoghbi,et al.  Mouse and fly models of neurodegeneration. , 2002, Trends in genetics : TIG.

[190]  J. Rothstein,et al.  Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[191]  J. Ikeda,et al.  Production of transgenic miniature pigs by pronuclear microinjection , 2001, Transgenic Research.

[192]  Robert H. Brown,et al.  Rats Expressing Human Cytosolic Copper–Zinc Superoxide Dismutase Transgenes with Amyotrophic Lateral Sclerosis: Associated Mutations Develop Motor Neuron Disease , 2001, The Journal of Neuroscience.

[193]  J. Holstege,et al.  Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1 , 2000, Neurobiology of Disease.

[194]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[195]  Kenji Nakashima,et al.  New consensus research on neuropathological aspects of familial amyotrophic lateral sclerosis with superoxide dismutase 1 (SOD1) gene mutations: Inclusions containing SOD1 in neurons and astrocytes , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[196]  P. S. St George-Hyslop,et al.  Expression of human FALS SOD in motorneurons of Drosophila. , 1999, Free radical biology & medicine.

[197]  D. Immanuel,et al.  TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. , 1997, Journal of cell science.

[198]  D. Price,et al.  Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[199]  M. Gurney,et al.  A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis , 1997, Acta Neuropathologica.

[200]  P. Andersen,et al.  Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. , 1996, Brain : a journal of neurology.

[201]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[202]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[203]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[204]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[205]  L. Kurland,et al.  Familial amyotrophic lateral sclerosis. A subgroup characterized by posterior and spinocerebellar tract involvement and hyaline inclusions in the anterior horn cells. , 1967, Archives of neurology.

[206]  W. Engel,et al.  An inherited disease similar to amyotrophic lateral sclerosis with a pattern of posterior column involvement. An intermediate form? , 1959, Brain : a journal of neurology.

[207]  T. Tokuda,et al.  Amyotrophic Lateral Sclerosis Model. , 2018, Advances in experimental medicine and biology.

[208]  J. Fernández-Ruiz,et al.  Upregulation of CB 2 receptors in reactive astrocytes in canine degenerative myelopathy , a disease model of amyotrophic lateral sclerosis , 2017 .

[209]  Yuki Hayashi,et al.  SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. , 2016, Advances in biological regulation.

[210]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[211]  J. Glass,et al.  SOD1 targeted to the mitochondrial intermembrane space prevents motor neuropathy in the Sod1 knockout mouse. , 2011, Brain : a journal of neurology.

[212]  D. Averill Degenerative myelopathy in the aging German Shepherd dog: clinical and pathologic findings. , 1973, Journal of the American Veterinary Medical Association.