Satellite-Derived Sea Surface Temperatures: Evaluation of GOES-8 and GOES-9 Multispectral Imager Retrieval Accuracy

Abstract Sea surface temperature (SST) retrieval accuracy from the multispectral imager on the new generation of GOES satellites is analyzed. Equations for two and three infrared channels are empirically derived using cloud-free satellite radiances matched to buoy SST measurements obtained in 1995 and 1996. Both GOES-8 and GOES-9 demonstrate the capability to retrieve sea surface temperature at better than 1-K root-mean-square difference (rmsd) with negligible bias relative to buoy SST measurements. GOES-8 rmsd errors are found to be 0.79 K (day) and 0.81 K (night). GOES-9 rmsd errors are 0.65 K (day) and 0.59 K (night). The GOES-9 results are relatively comparable to those currently achieved operationally from the NOAA polar-orbiting satellite Advanced Very High Resolution Radiometer sensor. Investigation revealed that GOES imager multiple detector scan striping impacted SST accuracy, requiring sample array averaging for best results.

[1]  A. Barnston,et al.  Prediction of ENSO Episodes Using Canonical Correlation Analysis , 1992 .

[2]  A. Strong,et al.  Improved Ocean Surface Temperatures From Space—Comparisons With Drifting Buoys , 1984 .

[3]  Larry M. McMillin,et al.  Estimation of sea surface temperatures from two infrared window measurements with different absorption , 1975 .

[4]  S. Baig,et al.  Geostationary satellite observations of Gulf Stream meanders: Infrared measurements and time series analysis , 1978 .

[5]  William G. Pichel,et al.  Comparative performance of AVHRR‐based multichannel sea surface temperatures , 1985 .

[6]  A. Schwalb,et al.  The TIROS-N/NOAA A-G satellite series , 1978 .

[7]  Mark A. Saunders,et al.  Global validation of the along-track scanning radiometer against drifting buoys , 1996 .

[8]  W. Menzel,et al.  Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites , 1994 .

[9]  E. Mcclain,et al.  A correction for Saharan dust effects on satellite sea surface temperature measurements , 1992 .

[10]  L. McMillin,et al.  Theory and validation of the multiple window sea surface temperature technique , 1984 .

[11]  I. J. Barton,et al.  Satellite-derived sea surface temperatures: Current status , 1995 .

[12]  Roger Saunders,et al.  Theoretical algorithms for satellite‐derived sea surface temperatures , 1989 .

[13]  A. Dudhia,et al.  Noise characteristics of the AVHRR infrared channels , 1989 .

[14]  T. Hogan,et al.  The Description of the Navy Operational Global Atmospheric Prediction System's Spectral Forecast Model , 1991 .

[15]  William L. Smith,et al.  Sea surface temperature: Observations from geostationary satellites , 1985 .

[16]  George A. Maul,et al.  Application of GOES visible‐infrared data to quantifying mesoscale ocean surface temperatures , 1981 .

[17]  Raymond J. Komajda,et al.  An introduction to the GOES I-M imager and sounder instruments and the GVAR retransmission format , 1987 .

[18]  P. Minnett Consequences of sea surface temperature variability on the validation and applications of satellite measurements , 1991 .

[19]  R. Kauth,et al.  Estimation of Sea Surface Temperature from Space , 1970 .

[20]  K. D. Pollak,et al.  Quantification of Improvements in an Operational Global-Scale Ocean Thermal Analysis System , 1992 .

[21]  E. Paul McClain,et al.  Global sea surface temperatures and cloud clearing for aerosol optical depth estimates , 1989 .

[22]  Michael P. Weinreb,et al.  Characteristics of E/W stripes in infrared images from the GOES-8 imager , 1996, Optics & Photonics.

[23]  J. Hawkins,et al.  Detecting Gulf of Mexico Oceanographic Features in Summer Using AVHRR Channel 3 , 1993 .