Multiple mechanisms of spike-frequency adaptation in motoneurones

[1]  R K Powers,et al.  Contribution of outward currents to spike-frequency adaptation in hypoglossal motoneurons of the rat. , 1997, Journal of neurophysiology.

[2]  J. Feldman,et al.  Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. , 1997, Journal of neurophysiology.

[3]  J. Hounsgaard,et al.  Depolarization-induced facilitation of a plateau-generating current in ventral horn neurons in the turtle spinal cord. , 1997, Journal of neurophysiology.

[4]  J. Coast Handbook of Physiology. Section 12. Exercise: Regulation and Integration of Multiple Systems , 1997 .

[5]  J. Hounsgaard,et al.  Detection of a membrane shunt by DC field polarization during intracellular and whole cell recording. , 1997, Journal of neurophysiology.

[6]  W. Vogel,et al.  Properties and functions of Na(+)‐activated K+ channels in the soma of rat motoneurones. , 1996, The Journal of physiology.

[7]  M. Gutnick,et al.  Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. , 1996, Journal of neurophysiology.

[8]  R K Powers,et al.  Effects of background noise on the response of rat and cat motoneurones to excitatory current transients. , 1996, The Journal of physiology.

[9]  S. Grillner,et al.  Electrogenic pump and a Ca(2+)- dependent K+ conductance contribute to a posttetanic hyperpolarization in lamprey sensory neurons. , 1996, Journal of neurophysiology.

[10]  M. Gutnick,et al.  Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea‐pig neocortical neurones in slices. , 1996, The Journal of physiology.

[11]  Pankaj Sah,et al.  Ca2+-activated K+ currents in neurones: types, physiological roles and modulation , 1996, Trends in Neurosciences.

[12]  C. Heckman,et al.  The Physiological Control of Motoneuron Activity , 1996 .

[13]  W. Crill,et al.  Persistent sodium current in mammalian central neurons. , 1996, Annual review of physiology.

[14]  M. Binder,et al.  Experimental evaluation of input-output models of motoneuron discharge. , 1996, Journal of neurophysiology.

[15]  R K Powers,et al.  Spike frequency adaptation studied in hypoglossal motoneurons of the rat. , 1995, Journal of neurophysiology.

[16]  M. Umemiya,et al.  Properties and function of low- and high-voltage-activated Ca2+ channels in hypoglossal motoneurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  S. Marom,et al.  State-dependent inactivation of the Kv3 potassium channel. , 1994, Biophysical journal.

[18]  L. Abbott,et al.  Modeling state-dependent inactivation of membrane currents. , 1994, Biophysical journal.

[19]  D. Bayliss,et al.  Postnatal changes in rat hypoglossal motoneuron membrane properties , 1994, Neuroscience.

[20]  D. Bayliss,et al.  Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons. , 1993, Journal of neurophysiology.

[21]  D A Bayliss,et al.  Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. , 1993, Journal of neurophysiology.

[22]  G. A. Robinson,et al.  Adaptation of cat motoneurons to sustained and intermittent extracellular activation. , 1993, The Journal of physiology.

[23]  P. Sah,et al.  Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons. , 1992, Journal of neurophysiology.

[24]  J. M. Ritchie,et al.  Multiple kinetic components of sodium channel inactivation in rabbit Schwann cells. , 1992, The Journal of physiology.

[25]  A. J. Berger,et al.  Double- and triple-labeling of functionally characterized central neurons projecting to peripheral targets studied in vitro , 1990, Neuroscience.

[26]  P. A. Getting,et al.  Biophysical properties of hypoglossal neurons in vitro: intracellular studies in adult and neonatal rats. , 1990, Journal of applied physiology.

[27]  J. Storm Potassium currents in hippocampal pyramidal cells. , 1990, Progress in brain research.

[28]  J. Rekling,et al.  Electrophysiological properties of hypoglossal motoneurons of guinea-pigs studied in vitro , 1989, Neuroscience.

[29]  Andrew S. French Ouabain selectively affects the slow component of sensory adaptation in an insect mechanoreceptor , 1989, Brain Research.

[30]  P. Schwindt,et al.  Electrical properties of facial motoneurons in brainstem slices from guinea pig , 1989, Brain Research.

[31]  P. Schwindt,et al.  Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons. , 1989, Journal of neurophysiology.

[32]  J. Hounsgaard,et al.  Calcium conductance and firing properties of spinal motoneurones in the turtle. , 1988, The Journal of physiology.

[33]  P. Schwindt,et al.  Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. , 1988, Journal of neurophysiology.

[34]  R. Nicoll,et al.  Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. , 1984, The Journal of physiology.

[35]  P. Schwindt,et al.  Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study. , 1982, Journal of neurophysiology.

[36]  W. Crill,et al.  Voltage‐sensitive outward currents in cat motoneurones. , 1980, The Journal of physiology.

[37]  P. Schwindt,et al.  Properties of a persistent inward current in normal and TEA-injected motoneurons. , 1980, Journal of neurophysiology.

[38]  F. Parmiggiani,et al.  Saturating summation of the afterhyperpolarization conductance in spinal motoneurones: A mechanism for ‘secondary range’ repetitive firing , 1978, Brain Research.

[39]  R. Llinás,et al.  The spatial distribution of ionic conductances in normal and axotomized motorneurons , 1977, Neuroscience.

[40]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[41]  B. Gustafsson,et al.  Firing behaviour of a neurone model based on the afterhyperpolarization conductance time course and algebraical summation. Adaptation and steady state firing. , 1974, Acta physiologica Scandinavica.

[42]  B. Gustafsson,et al.  Afterhyperpolarization conductance time course in lumbar motoneurones of the cat. , 1974, Acta physiologica Scandinavica.

[43]  D. Kernell,et al.  Repetitive impulse firing: comparisons between neurone models based on 'voltage clamp equations' and spinal motoneurones. , 1973, Acta physiologica Scandinavica.

[44]  I. Cooke,et al.  Inhibition of Impulse Activity in a Sensory Neuron by an Electrogenic Pump , 1971, The Journal of general physiology.

[45]  D. Kernell The Adaptation and the Relation between Discharge Frequency and Current Strength of Cat Lumbosacral Motoneurones Stimulated by Long‐Lasting Injected Currents , 1965 .

[46]  D. Kernell The Limits of Firing Frequency in Cat Lumbosacral Motoneurones Possessing Different Time Course of Afterhyperpolarization , 1965 .

[47]  D. Kernell,et al.  Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents , 1963, The Journal of physiology.

[48]  F. Plum Handbook of Physiology. , 1960 .

[49]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.