Motif-based analysis of large nucleotide data sets using MEME-ChIP

[1]  Jie Zhang,et al.  Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data , 2013, PLoS Comput. Biol..

[2]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[3]  Brendan J. Frey,et al.  A compendium of RNA-binding motifs for decoding gene regulation , 2013, Nature.

[4]  Graziano Pesole,et al.  PscanChIP: finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments , 2013, Nucleic Acids Res..

[5]  Shyam Prabhakar,et al.  TherMos: Estimating protein–DNA binding energies from in vivo binding profiles , 2013, Nucleic acids research.

[6]  Juan M. Vaquerizas,et al.  DNA-Binding Specificities of Human Transcription Factors , 2013, Cell.

[7]  Yu-Cheng T. Yang,et al.  Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae , 2013, Genome Biology.

[8]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[9]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[10]  J. Helden,et al.  A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs , 2012, Nature Protocols.

[11]  Johannes Söding,et al.  The XXmotif web server for eXhaustive, weight matriX-based motif discovery in nucleotide sequences , 2012, Nucleic Acids Res..

[12]  T. Bailey,et al.  Inferring direct DNA binding from ChIP-seq , 2012, Nucleic acids research.

[13]  Martin Renqiang Min,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[14]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[15]  Uwe Ohler,et al.  PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data , 2011, Genome Biology.

[16]  M. Zavolan,et al.  A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins , 2011, Nature Methods.

[17]  R. Darnell,et al.  Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data , 2011, Nature Biotechnology.

[18]  Martin C. Frith,et al.  Inferring transcription factor complexes from ChIP-seq data , 2011, Nucleic acids research.

[19]  Timothy L. Bailey,et al.  Gene expression Advance Access publication May 4, 2011 DREME: motif discovery in transcription factor ChIP-seq data , 2011 .

[20]  Philip Machanick,et al.  MEME-ChIP: motif analysis of large DNA datasets , 2011, Bioinform..

[21]  Yongchao Liu,et al.  CompleteMOTIFs: DNA motif discovery platform for transcription factor binding experiments , 2010, Bioinform..

[22]  Vsevolod J. Makeev,et al.  Deep and wide digging for binding motifs in ChIP-Seq data , 2010, Bioinform..

[23]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[24]  Timothy L Bailey,et al.  A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. , 2010, Genome research.

[25]  J. Ule,et al.  iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution , 2010, Nature Structural &Molecular Biology.

[26]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[27]  P. Park ChIP–seq: advantages and challenges of a maturing technology , 2009, Nature Reviews Genetics.

[28]  Victor X. Jin,et al.  W-ChIPMotifs: a web application tool for de novo motif discovery from ChIP-based high-throughput data , 2009, Bioinform..

[29]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[30]  A. Sharov,et al.  Exhaustive Search for Over-represented DNA Sequence Motifs with CisFinder , 2009, DNA research : an international journal for rapid publication of reports on genes and genomes.

[31]  Raymond K. Auerbach,et al.  Mapping accessible chromatin regions using Sono-Seq , 2009, Proceedings of the National Academy of Sciences.

[32]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[33]  Martha L. Bulyk,et al.  UniPROBE: an online database of protein binding microarray data on protein–DNA interactions , 2008, Nucleic Acids Res..

[34]  Matthew Mort,et al.  Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. , 2009, Genome research.

[35]  Tyson A. Clark,et al.  HITS-CLIP yields genome-wide insights into brain alternative RNA processing , 2008, Nature.

[36]  Daniel Herschlag,et al.  Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System , 2008, PLoS biology.

[37]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[38]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[39]  Claude Jacq,et al.  Yeast Mitochondrial Biogenesis: A Role for the PUF RNA-Binding Protein Puf3p in mRNA Localization , 2008, PloS one.

[40]  V. Iyer,et al.  FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. , 2007, Genome research.

[41]  William Stafford Noble,et al.  Quantifying similarity between motifs , 2007, Genome Biology.

[42]  M. Daly,et al.  Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). , 2005, Genome research.

[43]  P. Angel,et al.  AP-1 subunits: quarrel and harmony among siblings , 2004, Journal of Cell Science.

[44]  P. Brown,et al.  Extensive Association of Functionally and Cytotopically Related mRNAs with Puf Family RNA-Binding Proteins in Yeast , 2004, PLoS biology.

[45]  Wyeth W. Wasserman,et al.  JASPAR: an open-access database for eukaryotic transcription factor binding profiles , 2004, Nucleic Acids Res..

[46]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[47]  S. Henikoff,et al.  Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase , 2000, Nature Biotechnology.

[48]  T. Rabbitts,et al.  The LIM‐only protein Lmo2 is a bridging molecule assembling an erythroid, DNA‐binding complex which includes the TAL1, E47, GATA‐1 and Ldb1/NLI proteins , 1997, The EMBO journal.

[49]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.