Nanoporous WO3 films synthesized by tuning anodization conditions for photoelectrochemical water oxidation

[1]  D. Kang,et al.  Porous WO3 monolith-based photoanodes for high-efficient photoelectrochemical water splitting , 2019, Ceramics International.

[2]  Byeong-Kyu Lee,et al.  A novel growth control of nanoplates WO3 photoanodes with dual oxygen and tungsten vacancies for efficient photoelectrochemical water splitting performance , 2019, Solar Energy Materials and Solar Cells.

[3]  Yuan Huang,et al.  Preparation of a nanoporous active tungsten foil by two-step anodizing and deoxidized annealing for hydrogen evolution reaction , 2018, Nanotechnology.

[4]  F. Souza,et al.  Photoactive multilayer WO3 electrode synthesized via dip-coating , 2018, Ceramics International.

[5]  M. Pisarek,et al.  Enhanced Photocatalytic Water Splitting on Very Thin WO3 Films Activated by High-Temperature Annealing , 2018, ACS Catalysis.

[6]  Byeong-Kyu Lee,et al.  Efficient promotion of charge separation with reduced graphene oxide (rGO) in BiVO4/rGO photoanode for greatly enhanced photoelectrochemical water splitting , 2018, Solar Energy Materials and Solar Cells.

[7]  Yingnan Cao,et al.  Nanotube Array-Like WO3 Photoanode with Dual-Layer Oxygen-Evolution Cocatalysts for Photoelectrocatalytic Overall Water Splitting , 2018, ACS Applied Energy Materials.

[8]  Jinhua Ye,et al.  Interfacing Photosynthetic Membrane Protein with Mesoporous WO3 Photoelectrode for Solar Water Oxidation. , 2018, Small.

[9]  L. Duy,et al.  Recent Progress in Photoelectrochemical Water Splitting Activity of WO3 Photoanodes , 2018, Topics in Catalysis.

[10]  C. Mullins,et al.  Interface Engineering and its Effect on WO3-Based Photoanode and Tandem Cell. , 2018, ACS applied materials & interfaces.

[11]  Liejin Guo,et al.  Facile Synthesis of Ultrafine Hematite Nanowire Arrays in Mixed Water-Ethanol-Acetic Acid Solution for Enhanced Charge Transport and Separation. , 2018, ACS applied materials & interfaces.

[12]  Shanshan Liu,et al.  WO3 photoanodes with controllable bulk and surface oxygen vacancies for photoelectrochemical water oxidation , 2018 .

[13]  Yongkeun Son,et al.  Solution-processed yolk–shell-shaped WO3/BiVO4 heterojunction photoelectrodes for efficient solar water splitting , 2018 .

[14]  K. Arifin,et al.  Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes , 2017 .

[15]  S. S. Kalanur,et al.  Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity , 2017 .

[16]  Panagiotis Lianos,et al.  Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen , 2017 .

[17]  Wei‐De Zhang,et al.  Facile synthesis of Ni-doped WO3 nanoplate arrays for effective photoelectrochemical water splitting , 2017, Journal of Solid State Electrochemistry.

[18]  K. A. Razak,et al.  Preparation of anodic nanoporous WO3 film using oxalic acid as electrolyte , 2017 .

[19]  P. Schmuki,et al.  On the Supercapacitive Behaviour of Anodic Porous WO3-Based Negative Electrodes , 2017 .

[20]  A. Georg,et al.  Photoelectrochromic devices based on sputtered WO3 and TiO2 films , 2017 .

[21]  Leszek Zaraska,et al.  Influence of annealing conditions on anodic tungsten oxide layers and their photoelectrochemical activity , 2017 .

[22]  D. Friedrich,et al.  Mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach , 2017 .

[23]  B. M. Rao,et al.  Anodically grown functional oxide nanotubes and applications , 2016 .

[24]  Liejin Guo,et al.  Branched Tungsten Oxide Nanorod Arrays Synthesized by Controlled Phase Transformation for Solar Water Oxidation , 2016 .

[25]  Jinzhan Su,et al.  A Place in the Sun for Artificial Photosynthesis , 2016 .

[26]  D. Chidambaram,et al.  Photoelectrochemical performance of ZnCdSe-sensitized WO3 thin films , 2016 .

[27]  Li Wang,et al.  Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy , 2015, Advanced materials.

[28]  K. Hong,et al.  A tree-like nanoporous WO3 photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation , 2015 .

[29]  Zhengxiao Guo,et al.  Visible-light driven heterojunction photocatalysts for water splitting – a critical review , 2015 .

[30]  M. Süess,et al.  Microwave-assisted nonaqueous synthesis of WO3 nanoparticles for crystallographically oriented photoanodes for water splitting , 2014 .

[31]  Chang Woo Kim,et al.  Facile Fabrication of WO3 Nanoplates Thin Films with Dominant Crystal Facet of (002) for Water Splitting , 2014 .

[32]  C. Lai,et al.  A Novel Solar Driven Photocatalyst: Well-Aligned Anodic WO 3 Nanotubes , 2013 .

[33]  C. Mullins,et al.  Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance , 2013 .

[34]  C. Lai,et al.  Fabrication of WO3 nanostructures by anodization method for visible-light driven water splitting and photodegradation of methyl orange , 2013 .

[35]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[36]  S. Zhuiykov,et al.  Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property , 2013 .

[37]  P. Schmuki,et al.  Rapid anodic formation of high aspect ratio WO3 layers with self-ordered nanochannel geometry and use in photocatalysis. , 2012, Chemistry.

[38]  R. Jurczakowski,et al.  A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. , 2012, Nanoscale.

[39]  T. Mallouk,et al.  Dense layers of vertically oriented WO3 crystals as anodes for photoelectrochemical water oxidation. , 2012, Chemical communications.

[40]  Ming Hu,et al.  NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film , 2012 .

[41]  C. Bignozzi,et al.  Efficient Anodically Grown WO3 for Photoelectrochemical Water Splitting , 2012 .

[42]  Yuxiang Qin,et al.  Porous WO3 from anodized sputtered tungsten thin films for NO2 detection , 2011 .

[43]  Liejin Guo,et al.  Vertically aligned WO₃ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. , 2011, Nano letters.

[44]  Sha Luo,et al.  Visible light photoelectrochemical responsiveness of self-organized nanoporous WO3 films , 2010 .

[45]  J. Tu,et al.  Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers , 2010 .

[46]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[47]  K. Latham,et al.  Nanoporous WO3 from anodized RF sputtered tungsten thin films , 2009 .

[48]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[49]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[50]  P. Kajitvichyanukul,et al.  Anodic growth of nanoporous WO3 films: Morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion , 2008 .

[51]  C. Grimes,et al.  Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes , 2007 .

[52]  Jan Augustynski,et al.  Nanostructured thin-film tungsten trioxide photoanodes for solar water and sea-water splitting , 2006, SPIE Optics + Photonics.

[53]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[54]  J. Augustynski,et al.  Electrochromic and photoelectrochemical characteristics of nanostructured WO3 films prepared by a sol-gel method , 2006 .

[55]  Craig A Grimes,et al.  Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. , 2005, The journal of physical chemistry. B.

[56]  Craig A. Grimes,et al.  Fabrication of nanoporous tungsten oxide by galvanostatic anodization , 2003 .

[57]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[58]  J. Augustynski,et al.  Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. , 2001, Journal of the American Chemical Society.

[59]  J. Augustynski,et al.  Enhanced Visible Light Conversion Efficiency Using Nanocrystalline WO3 Films , 2001 .

[60]  Jan Augustynski,et al.  Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films , 2001 .

[61]  R. W. Fessenden,et al.  Electrochromic and photoelectrochromic behavior of thin WO[sub 3] films prepared from quantum size colloidal particles , 1994 .

[62]  P. Dickens,et al.  Electrochemical Insertion of Hydrogen in WO 3 , 1982 .