Upper semicontinuity of attractors for approximations of semigroups and partial differential equations

Abstract : Suppose a given evolutionary equation has a compact attractor and the evolutionary equation is approximated by a finite dimensional system. Conditions are given to ensure the approximate system has a compact attractor which converges to the original one as the approximation is refined. Applications are given to parabolic and hyperbolic partial differential equations.

[1]  V. Thomée,et al.  Single step methods for inhomogeneous linear differential equations in Banach space , 1982 .

[2]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[3]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .

[4]  J. Hale Some recent results on dissipative processes , 1980 .

[5]  P. Massatt Attractivity properties of α-contractions☆ , 1983 .

[6]  Vidar Thomée,et al.  On Galerkin Methods in Semilinear Parabolic Problems , 1975 .

[7]  P. Rutkowski Approximate solutions of eigenvalue problems with reproducing nonlinearities , 1983 .

[8]  Tosio Kato,et al.  Fractional powers of dissipative operators , 1961 .

[9]  Hiroshi Fujita,et al.  On the finite element method for parabolic equations, I; approximation of holomorphic semi-groups1) , 1976 .

[10]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[11]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[12]  Vidar Thomée,et al.  Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations , 1977 .

[13]  J. P. Lasalle,et al.  Theory of a general class of dissipative processes. , 1972 .

[14]  Vidar Thomée,et al.  On the Discretization in Time of Semilinear Parabolic Equations with Nonsmooth Initial Data , 1987 .

[15]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[16]  S. G. N. Khalsa Finite element approximation of a reaction-diffusion equation. I. Application of topological techniques to the analysis of asymptotic behavior of the semidiscrete approximations , 1986 .

[17]  J. P. Lasalle,et al.  Dissipative periodic processes , 1971 .

[18]  J. Lions,et al.  Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs , 1962 .

[19]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[20]  Existence of solutions of a nonlinear boundary value problem via the method of lines , 1978 .

[21]  Hans Peter Helfrich,et al.  Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen , 1974 .

[22]  R. Temam,et al.  On the Large Time Galerkin Approximation of the Navier–Stokes Equations , 1984 .

[23]  O. Ladyzhenskaya,et al.  A dynamical system generated by the Navier-Stokes equations , 1975 .

[24]  Jack K. Hale,et al.  Fixed point theorems and dissipative processes. , 1973 .

[25]  Stig Larsson,et al.  Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data , 1987 .